Journal Home > Volume 8 , Issue 12

The development of methods to produce nanoparticles with unique properties via the aerosol route is progressing rapidly. Typical characterization techniques extract particles from the synthesis process for subsequent offline analysis, which may alter the particle characteristics. In this work, we use laser-vaporization aerosol mass spectrometry (LV-AMS) with 70-eV electron ionization for real-time, in-situ nanoparticle characterization. The particle characteristics are examined for various aerosol synthesis methods, degrees of sintering, and for controlled condensation of organic material to simulate surface coating/functionalization. The LV-AMS is used to characterize several types of metal nanoparticles (Ag, Au, Pd, PdAg, Fe, Ni, and Cu). The degree of oxidation of the Fe and Ni nanoparticles is found to increase with increased sintering temperature, while the surface organic-impurity content of the metal particles decreases with increased sintering temperature. For aggregate metal particles, the organic-impurity content is found to be similar to that of a monolayer. By comparing different equivalent-diameter measurements, we demonstrate that the LV-AMS can be used in tandem with a differential mobility analyzer to determine the compactness of synthesized metal particles, both during sintering and during material addition for surface functionalization. Further, materials supplied to the particle production line downstream of the particle generators are found to reach the generators as contaminants. The capacity for such in-situ observations is important, as it facilitates rapid response to undesired behavior within the particle production process. This study demonstrates the utility of real-time, in-situ aerosol mass spectrometric measurements to characterize metal nanoparticles obtained directly from the synthesis process line, including their chemical composition, shape, and contamination, providing the potential for effective optimization of process operating parameters.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In-situ characterization of metal nanoparticles and their organic coatings using laser-vaporization aerosol mass spectrometry

Show Author's information Patrik T. Nilsson1( )Axel C. Eriksson1,2Linus Ludvigsson3Maria E. Messing3,4Erik Z. Nordin1Anders Gudmundsson1Bengt O. Meuller3Knut Deppert3Edward C. Fortner5Timothy B. Onasch5Joakim H. Pagels1
Ergonomics and Aerosol Technology, Lund UniversityP.O. Box 118, LundSE-22100Sweden
Nuclear Physics, Lund UniversityP.O. Box 118, LundSE-22100Sweden
Solid State Physics, Lund UniversityP.O. Box 118, LundSE-22100Sweden
Synchrotron Radiation Research, Lund UniversityP.O. Box 118, LundSE-22100Sweden
Aerodyne Research Inc.Billerica, MA01821-3976USA

Abstract

The development of methods to produce nanoparticles with unique properties via the aerosol route is progressing rapidly. Typical characterization techniques extract particles from the synthesis process for subsequent offline analysis, which may alter the particle characteristics. In this work, we use laser-vaporization aerosol mass spectrometry (LV-AMS) with 70-eV electron ionization for real-time, in-situ nanoparticle characterization. The particle characteristics are examined for various aerosol synthesis methods, degrees of sintering, and for controlled condensation of organic material to simulate surface coating/functionalization. The LV-AMS is used to characterize several types of metal nanoparticles (Ag, Au, Pd, PdAg, Fe, Ni, and Cu). The degree of oxidation of the Fe and Ni nanoparticles is found to increase with increased sintering temperature, while the surface organic-impurity content of the metal particles decreases with increased sintering temperature. For aggregate metal particles, the organic-impurity content is found to be similar to that of a monolayer. By comparing different equivalent-diameter measurements, we demonstrate that the LV-AMS can be used in tandem with a differential mobility analyzer to determine the compactness of synthesized metal particles, both during sintering and during material addition for surface functionalization. Further, materials supplied to the particle production line downstream of the particle generators are found to reach the generators as contaminants. The capacity for such in-situ observations is important, as it facilitates rapid response to undesired behavior within the particle production process. This study demonstrates the utility of real-time, in-situ aerosol mass spectrometric measurements to characterize metal nanoparticles obtained directly from the synthesis process line, including their chemical composition, shape, and contamination, providing the potential for effective optimization of process operating parameters.

Keywords: morphology, alloy, metal, aerosol, organic surface coating, contamination, spark discharge

References(38)

1

Kruis, F. E.; Fissan, H.; Peled, A. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—A review. J. Aerosol Sci. 1998, 29, 511–535.

2

Braakhuis, H. M.; Park, M. V. D. Z.; Gosens, I.; De Jong, W. H.; Cassee, F. R. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part. Fibre Toxicol. 2014, 11, 18.

3

Buesser, B.; Pratsinis, S. E. Design of nanomaterial synthesis by aerosol processes. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 103–127.

4

Kulkarni, P. P.; Baron, P. A.; Willeke, K. Aerosol Measurement: Principles, Techniques, and Applications, 3rd ed; John Wiley & Sons: Hoboken, New Jersey, 2011.

DOI
5

Messing, M. E.; Westerstrom, R.; Meuller, B. O.; Blomberg, S.; Gustafson, J.; Andersen, J. N.; Lundgren, E.; van Rijn, R.; Balmes, O.; Bluhm, H. et al. Generation of Pd model catalyst nanoparticles by spark discharge. J. Phys. Chem. C 2010, 114, 9257–9263.

6

Blomberg, S.; Westerström, R.; Martin, N. M.; Lundgren, E.; Andersen, J. N.; Messing, M. E.; Gustafson, J. A high pressure X-ray photoelectron spectroscopy study of oxidation and reduction of Rh(100) and Rh nanoparticles. Surf. Sci. 2014, 628, 153–158.

7

Murphy, D. M. The design of single particle laser mass spectrometers. Mass. Spectrom. Rev. 2007, 26, 150–165.

8

Jayne, J. T.; Leard, D. C.; Zhang, X. F.; Davidovits, P.; Smith, K. A.; Kolb, C. E.; Worsnop, D. R. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Tech. 2000, 33, 49–70.

9

Canagaratna, M. R.; Jayne, J. T.; Jimenez, J. L.; Allan, J. D.; Alfarra, M. R.; Zhang, Q.; Onasch, T. B.; Drewnick, F.; Coe, H.; Middlebrook, A. et al. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass. Spectrom. Rev. 2007, 26, 185–222.

10

Cross, E. S.; Sappok, A.; Fortner, E. C.; Hunter, J. F.; Jayne, J. T.; Brooks, W. A.; Onasch, T. B.; Wong, V. W.; Trimborn, A.; Worsnop, D. R. et al. Real-time measurements of engine-out trace elements: Application of a novel soot particle aerosol mass spectrometer for emissions characterization. J. Eng. Gas Turb. Power 2012, 134, 072801.

11

Eriksson, A. C.; Nordin, E. Z.; Nyström, R.; Pettersson, E.; Swietlicki, E.; Bergvall, C.; Westerholm, R.; Boman, C.; Pagels, J. H. Particulate PAH emissions from residential biomass combustion: Time-resolved analysis with aerosol mass spectrometry. Environ. Sci. Technol. 2014, 48, 7143–7150.

12

Salcedo, D.; Onasch, T. B.; Aiken, A. C.; Williams, L. R.; de Foy, B.; Cubison, M. J.; Worsnop, D. R.; Molina, L. T.; Jimenez, J. L. Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations. Atmos. Chem. Phys. 2010, 10, 5371–5389.

13

Zhang, Q.; Jimenez, J. L.; Canagaratna, M. R.; Allan, J. D.; Coe, H.; Ulbrich, I.; Alfarra, M. R.; Takami, A.; Middlebrook, A. M.; Sun, Y. L. et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 2007, 34, L13801.

14

Salcedo, D.; Laskin, A.; Shutthanandan, V.; Jimenez, J. L. Feasibility of the detection of trace elements in particulate matter using online high-resolution aerosol mass spectrometry. Aerosol Sci. Tech. 2012, 46, 1187–1200.

15

Onasch, T. B.; Trimborn, A.; Fortner, E. C.; Jayne, J. T.; Kok, G. L.; Williams, L. R.; Davidovits, P.; Worsnop, D. R. Soot particle aerosol mass spectrometer: Development, validation, and initial application. Aerosol Sci. Tech. 2012, 46, 804–817.

16

Nilsson, P. T.; Isaxon, C.; Eriksson, A. C.; Messing, M. E.; Ludvigsson, L.; Rissler, J.; Hedmer, M.; Tinnerberg, H.; Gudmundsson, A.; Deppert, K. et al. Nano-objects emitted during maintenance of common particle generators: Direct chemical characterization with aerosol mass spectrometry and implications for risk assessments. J. Nanopart. Res. 2013, 15, 2052.

17

Carbone, S.; Onasch, T.; Saarikoski, S.; Timonen, H.; Saarnio, K.; Sueper, D.; Rönkkö, T.; Pirjola, L.; Worsnop, D.; Hillamo, R. Characterization of trace metals with the SP-AMS: Detection and quantification. Atmos. Meas. Tech. 2015, 8, 5735–5768.

18

Svensson, C. R.; Ludvigsson, L.; Meuller, B. O.; Eggersdorfer, M. L.; Deppert, K.; Bohgard, M.; Pagels, J. H.; Messing, M. E.; Rissler, J. Characteristics of airborne gold aggregates generated by spark discharge and high temperature evaporation furnace: Mass–mobility relationship and surface area. J. Aerosol Sci. 2015, 87, 38–52.

19

Heurlin, M.; Magnusson, M. H.; Lindgren, D.; Ek, M.; Wallenberg, L. R.; Deppert, K.; Samuelson, L. Continuous gas-phase synthesis of nanowires with tunable properties. Nature 2012, 492, 90–94.

20

Freund, R. S.; Wetzel, R. C.; Shul, R. J.; Hayes, T. R. Cross-section measurements for electron-impact ionization of atoms. Phys. Rev. A 1990, 41, 3575–3595.

21

Dzepina, K.; Arey, J.; Marr, L. C.; Worsnop, D. R.; Salcedo, D.; Zhang, Q.; Onasch, T. B.; Molina, L. T.; Molina, M. J.; Jimenez, J. L. Detection of particle-phase polycyclic aromatic hydrocarbons in Mexico City using an aerosol mass spectrometer. Int. J. Mass Spectrom. 2007, 263, 152–170.

22

Alfarra, M. R.; Paulsen, D.; Gysel, M.; Garforth, A. A.; Dommen, J.; Prévôt, A. S. H.; Worsnop, D. R.; Baltensperger, U.; Coe, H. A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber. Atmos. Chem. Phys. 2006, 6, 5279–5293.

23

Drewnick, F.; Hings, S. S.; DeCarlo, P.; Jayne, J. T.; Gonin, M.; Fuhrer, K.; Weimer, S.; Jimenez, J. L.; Demerjian, K. L.; Borrmann, S. et al. A new time-of-flight aerosol mass spectrometer (TOF-AMS)—Instrument description and first field deployment. Aerosol Sci. Tech. 2005, 39, 637–658.

24

Pöschl, U.; Martin, S. T.; Sinha, B.; Chen, Q.; Gunthe, S. S.; Huffman, J. A.; Borrmann, S.; Farmer, D. K.; Garland, R. M.; Helas, G. et al. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the amazon. Science 2010, 329, 1513–1516.

25

Matthew, B. M.; Middlebrook, A. M.; Onasch, T. B. Collection efficiencies in an aerodyne aerosol mass spectrometer as a function of particle phase for laboratory generated aerosols. Aerosol Sci. Tech. 2008, 42, 884–898.

26

Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon. Atmos. Meas. Tech. 2014, 7, 4507–4516.

27

Ehara, K.; Hagwood, C.; Coakley, K. J. Novel method to classify aerosol particles according to their mass-to-charge ratio—Aerosol particle mass analyser. J. Aerosol Sci. 1996, 27, 217–234.

28

Park, K.; Cao, F.; Kittelson, D. B.; McMurry, P. H. Relationship between particle mass and mobility for diesel exhaust particles. Environ. Sci. Technol. 2003, 37, 577–583.

29

Olfert, J. S.; Collings, N. New method for particle mass classification—The Couette centrifugal particle mass analyzer. J. Aerosol Sci. 2005, 36, 1338–1352.

30

DeCarlo, P. F.; Slowik, J. G.; Worsnop, D. R.; Davidovits, P.; Jimenez, J. L. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Sci. Tech. 2004, 38, 1185–1205.

31

Sleno, L. The use of mass defect in modern mass spectrometry. J. Mass Spectrom. 2012, 47, 226–236.

32

Canagaratna, M. R.; Massoli, P.; Browne, E. C.; Franklin, J. P.; Wilson, K. R.; Onasch, T. B.; Kirchstetter, T. W.; Fortner, E. C.; Kolb, C. E.; Jayne, J. T. et al. Chemical compositions of black carbon particle cores and coatings via soot particle aerosol mass spectrometry with photoionization and electron ionization. J. Phys. Chem. A 2015, 119, 4589–4599.

33

Messing, M. E.; Hillerich, K.; Bolinsson, J.; Storm, K.; Johansson, J.; Dick, K. A.; Deppert, K. A comparative study of the effect of gold seed particle preparation method on nanowire growth. Nano Res. 2010, 3, 506–519.

34

Lundqvist, M.; Stigler, J.; Cedervall, T.; Berggård, T.; Flanagan, M. B.; Lynch, I.; Elia, G.; Dawson, K. The evolution of the protein corona around nanoparticles: A test study. Acs Nano 2011, 5, 7503–7509.

35

Mansfield, E.; Tyner, K. M.; Poling, C. M.; Blacklock, J. L. Determination of nanoparticle surface coatings and nanoparticle purity using microscale thermogravimetric analysis. Anal. Chem. 2014, 86, 1478–1484.

36

Blomberg, S.; Gustafson, J.; Martin, N. M.; Messing, M. E.; Deppert, K.; Liu, Z.; Chang, R.; Fernandes, V. R.; Borg, A.; Grönbeck, H. et al. Generation and oxidation of aerosol deposited PdAg nanoparticles. Surf. Sci. 2013, 616, 186–191.

37

Park, K.; Dutcher, D.; Emery, M.; Pagels, J.; Sakurai, H.; Scheckman, J.; Qian, S.; Stolzenburg, M. R.; Wang, X.; Yang, J. et al. Tandem measurements of aerosol properties—A review of mobility techniques with extensions. Aerosol Sci. Tech. 2008, 42(10), 801–816.

38

Pagels, J.; Khalizov, A. F.; McMurry, P. H.; Zhang, R. Y. Processing of soot by controlled sulphuric acid and water condensation-mass and mobility relationship. Aerosol Sci. Tech. 2009, 43, 629–640.

File
nr-8-12-3780_ESM.pdf (606.1 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 June 2015
Revised: 06 August 2015
Accepted: 09 August 2015
Published: 14 November 2015
Issue date: December 2015

Copyright

© The Author(s) 2015

Acknowledgements

Acknowledgements

This work was financed by NanoLund at LU, The Swedish Research Council VR (No. 2013-5021) and AFA Insurance (No. 130122). This work was performed within the framework of Metalund, the Centre for Medicine and Technology for Working Life and Society, supported by FORTE, the Swedish Council for Working Life and Social Research.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return