Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Amorphous nickel tungsten tetraoxide (NiWO4) nanostructures (NSs) were successfully synthesized on a flexible conductive fabric (CF) using a facile onestep electrochemical deposition (ED) method. With an applied external cathodic voltage (–1.8 V for 15 min), the amorphous NiWO4 NSs with burl-like morphologies adhered well on the seed-coated CF substrate. The burl-like amorphous NiWO4 NSs on CF (NiWO4 NSs/CF) are employed as a flexible and binder-free electrode for pseudocapacitors, which exhibit remarkable electrochemical properties with high specific capacitance (1, 190.2 F/g at 2 A/g), excellent cyclic stability (92% at 10 A/g), and good rate capability (765.7 F/g at 20 A/g) in 1 M KOH electrolyte solution. The superior electrochemical properties can be ascribed to the hierarchical structure and large specific surface area of the burl-like amorphous NiWO4 NSs/CF. This cost-effective facile method for the synthesis of metal tungsten tetraoxide nanomaterials on a flexible CF could be promising for advanced electronic and energy storage device applications.
Jost, K.; Dion, G.; Gogotsi, Y. Textile energy storage in perspective. J. Mater. Chem. A 2014, 2, 10776–10787.
Lee, Y. H.; Kim, J. S.; Noh, J.; Lee, I.; Kim, H. J.; Choi, S.; Seo, J.; Jeon, S.; Kim, T. S.; Lee, J. Y. et al. Wearable textile battery rechargeable by solar energy. Nano Lett. 2013, 13, 5753–5761.
Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M. L.; Wang, Z. L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem., Int. Ed. 2011, 50, 1683–1687.
Hu, L. B; Chen, W.; Xie, X.; Liu, N.; Yang, Y.; Wu, H.; Yao, Y.; Pasta, M.; Alshareef, H. N.; Cui, Y. Symmetrical MnO2–carbon nanotube–textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 2011, 5, 8904–8913.
Lee, M.; Chen, C. Y.; Wang, S. H.; Cha, S. N.; Park, Y. J.; Kim, J. M.; Chou, L. J.; Wang, Z. L. A hybrid piezoelectric structure for wearable nanogenerators. Adv. Mater. 2012, 24, 1759–1764.
Fu, Y. P.; Cai, X.; Wu, H. W.; Lv, Z. B.; Hou, S. C.; Peng, M.; Yu, X.; Zou, D. C. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 2012, 24, 5713–5718.
Li, Q.; Wang, Z. L.; Li, G. R.; Guo, R.; Ding, L. X.; Tong, Y. X. Design and synthesis of MnO2/Mn/MnO2 sandwichstructured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Lett. 2012, 12, 3803–3807.
Huang, K. J.; Zhang, J. Z.; Shi, G. W.; Liu, Y. M. Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material. Electrochim. Acta 2014, 132, 397–403.
Li, S. Z.; Wen, J.; Mo, X. M.; Long, H.; Wang, H. N.; Wang, J. B.; Fang, G. J. Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode. J. Power Sources 2014, 256, 206–211.
Wang, K.; Zhang, L.; Ji, B. C.; Yuan, J. L. The thermal analysis on the stackable supercapacitor. Energy 2013, 59, 440–444.
Rajeswari, J.; Kishore, P. S.; Viswanathan, B.; Varadarajan, T. K. One-dimensional MoO2 nanorods for supercapacitor applications. Electrochem. Commun. 2009, 11, 572–575.
Yang, L.; Cheng, S.; Ding, Y.; Zhu, X. B.; Wang, Z. L.; Liu, M. L. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett. 2012, 12, 321–325.
Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat Mater. 2008, 7, 845–854.
Burke, A. R&D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta 2007, 53, 1083–1091.
Zhang, X.; Yu, P.; Zhang, H. T.; Zhang, D. C.; Sun, X. Z.; Ma, Y. W. Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim. Acta 2013, 89, 523–529.
Krishnan, S. G.; Reddy, M. V.; Harilal, M.; Vidyadharan, B.; Misnon, I. I.; Rahim, M. H. A.; Ismail, J.; Jose, R. Characterization of MgCo2O4 as an electrode for high performance supercapacitors. Electrochim. Acta 2015, 161, 312–321.
Gupta, V.; Miura, N. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Mater. Lett. 2006, 60, 1466–1469.
Mondal, C.; Ganguly, M.; Manna, P. K.; Yusuf, S. M.; Pal, T. Fabrication of porous β-Co(OH)2 architecture at room temperature: A high performance supercapacitor. Langmuir 2013, 29, 9179–9187.
Wang, Q. F.; Wang, X. F.; Liu, B.; Yu, G.; Hou, X. J.; Chen, D.; Shen, G. Z. NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. J. Mater. Chem. A 2013, 1, 2468–2473.
Yu, L.; Zhang, G. Q.; Yuan, C. Z.; Lou, X. W. Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem. Comm. 2013, 49, 137–139.
Dong, B.; Zhou, H.; Liang, J.; Zhang, L.; Gao, G. X.; Ding, S. J. One-step synthesis of free-standing α-Ni(OH)2 nanosheets on reduced graphene oxide for high-performance supercapacitors. Nanotechnology 2014, 25, 435403.
Wang, H. W.; Xu, Z. J.; Yi, H.; Wei, H. G.; Guo, Z. H.; Wang, X. F. One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 2014, 7, 86–96.
Zhu, B. T.; Wang, Z. Y.; Ding, S. J.; Chen, J. S.; Lou, X. W. Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. RSC Adv. 2011, 1, 397–400.
Yuan, C. Z.; Li, J. Y.; Hou, L. R.; Zhang, X. G.; Shen, L. F.; Lou, X. W. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 2012, 22, 4592–4597.
Zhang, G. Q.; Lou, X. W. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 2013, 25, 976–979.
Zhang, G. H.; Wang, T. H.; Yu, X. Z.; Zhang, H. N.; Duan, H. G.; Lu, B. G. Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy 2013, 2, 586–594.
Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Chen, J.; Wang, X. L.; Gu, C. D.; Guan, C.; Luo, J. S.; Fan, H. J. Porous hydroxide nanosheets on preformed nanowires by electrodeposition: Branched nanoarrays for electrochemical energy storage. Chem. Mater. 2012, 24, 3793–3799.
Zhou, J.; Huang, Y.; Cao, X. H.; Ouyang, B.; Sun, W. P.; Tan, C. L.; Zhang, Y.; Ma, Q. L.; Liang, S. Q.; Yan, Q. Y. et al. Two-dimensional NiCo2O4 nanosheet-coated threedimensional graphene networks for high-rate, long-cyclelife supercapacitors. Nanoscale 2015, 7, 7035–7039.
Sun, X. X.; Wang, H. J.; Lei, Z. B.; Liu, Z. H.; Wei, L. Q. MnO2 nanoflakes grown on 3D graphite network for enhanced electrocapacitive performance. RSC Adv. 2014, 4, 30233–30240.
Li, W.; Xin, L. P.; Xu, X.; Liu, Q. D.; Zhang, M.; Ding, S. J.; Zhao, M. S.; Lou, X. J. Facile synthesis of three-dimensional structured carbon fiber-NiCo2O4-Ni(OH)2 high-performance electrode for pseudocapacitors. Sci. Rep. 2015, 5, 9277.
Ko, Y. H.; Kim, S.; Park, W.; Yu, J. S. Facile fabrication of forest-like ZnO hierarchical structures on conductive fabric substrate. Phys. Status Solidi Rapid Res. Lett. 2012, 6, 355–357.
Ye, S. B.; Feng, J. C.; Wu, P. Y. Deposition of threedimensional graphene aerogel on nickel foam as a binderfree supercapacitor electrode. ACS Appl. Mater. Interfaces 2013, 5, 7122–7129.
Xia, H.; Zhu, D. D.; Luo, Z. T.; Yu, Y.; Shi, X. Q.; Yuan, G. L.; Xie, J. P. Hierarchically structured Co3O4@Pt@MnO2 nanowire arrays for high-performance supercapacitors. Sci. Rep. 2013, 3, 2978.
Chen, Y. C.; Hsu, Y. K.; Lin, Y. G.; Lin, Y. K.; Horng, Y. Y.; Chen, L. C.; Chen, K. H. Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode. Electrochim. Acta 2011, 56, 7124–7130.
Li, W. C.; Mak, C. L.; Kan, C. W.; Hui, C. Y. Enhancing the capacitive performance of a textile-based CNT supercapacitor. RSC Adv. 2014, 4, 64890–64900.
Nagaraju, G.; Ko, Y. H.; Yu, J. S. Tricobalt tetroxide nanoplate arrays on flexible conductive fabric substrate: Facile synthesis and application for electrochemical supercapacitors. J. Power Sources 2015, 283, 251–259.
Ede, S. R.; Ramadoss, A.; Anantharaj, S.; Nithiyanantham, U.; Kundu, S. Enhanced catalytic and supercapacitor activities of DNA encapsulated β-MnO2 nanomaterials. Phys. Chem. Chem. Phys. 2014, 16, 21846–21859.
Bi, R. R.; Wu, X. L.; Cao, F. F.; Jiang, L. Y.; Guo, Y. G.; Wan, L. J. Highly dispersed RuO2 nanoparticles on carbon nanotubes: Facile synthesis and enhanced supercapacitance performance. J. Phys. Chem. C 2010, 114, 2448–2451.
Yang, Q.; Lu, Z.; Sun, X.; Liu, J. Ultrathin Co3O4 nanosheet arrays with high supercapacitive performance. Sci. Rep. 2013, 3, 3537.
Liang, K.; Tang, X. Z.; Hu, W. C. High-performance threedimensional nanoporous NiO film as a supercapacitor electrode. J. Mater. Chem. 2012, 22, 11062–11067.
Shivakumara, S.; Penki, T. R.; Munichandraiah, N. Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material. J. Solid State Electrochem. 2014, 18, 1057–1066.
Nithiyanantham, U.; Ramadoss, A.; Ede, S. R.; Kundu, S. DNA mediated wire-like clusters of self-assembled TiO2 nanomaterials: Supercapacitor and dye sensitized solar cell applications. Nanoscale 2014, 6, 8010–8023.
Yang, W. L.; Gao, Z.; Ma, J.; Wang, J.; Zhang, X. M.; Liu, L. H. Two-step electrodeposition construction of flower-onsheet hierarchical cobalt hydroxide nano-forest for highcapacitance supercapacitors. Dalton Trans. 2013, 42, 15706–15715.
Peng, S. J.; Li, L. L.; Wu, H. B.; Madhavi, S.; Lou, X. W. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater. 2015, 5, 1401172.
Xu, Y. N.; Wang, X. F.; An, C. H.; Wang, Y. J.; Jiao, L. F.; Yuan, H. T. Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors. J. Mater. Chem. A 2014, 2, 16480–16488.
Chen, H.; Hu, L. F.; Chen, M.; Yan, Y.; Wu, L. M. Nickel–cobalt layered double hydroxide nanosheets for highperformance supercapacitor electrode materials. Adv. Funct. Mater. 2014, 24, 934–942.
Yang, W. L.; Gao, Z.; Wang, J.; Ma, J.; Zhang, M. L.; Liu, L. H. Solvothermal one-step synthesis of Ni–Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 5443–5454.
Sun, B.; Zhao, W. X.; Wei, L. J.; Li, H. W.; Chen, P. Enhanced resistive switching effect upon illumination in self-assembled NiWO4 nano-nests. Chem. Commun. 2014, 50, 13142–13145.
Ling, C.; Zhou, L. Q.; Jia, H. F. First-principles study of crystalline CoWO4 as oxygen evolution reaction catalyst. RSC Adv. 2014, 4, 24692–24697.
Nithiyanantham, U.; Ede, S. R.; Anantharaj, S.; Kundu, S. Self-assembled NiWO4 nanoparticles into chain-like aggregates on DNA scaffold with pronounced catalytic and supercapacitor activities. Cryst. Growth Des. 2015, 15, 673–686.
Xing, X. T.; Gui, Y. L.; Zhang, G. J.; Song, C. Y. CoWO4 nanoparticles prepared by two methods displaying different structures and supercapacitive performances. Electrochim. Acta 2015, 157, 15–22.
Niu, L. Y.; Li, Z. P.; Xu, Y.; Sun, J. F.; Hong, W.; Liu, X. H.; Wang, J. Q.; Yang, S. R. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS. Appl. Mater. Interfaces 2013, 5, 8044–8052.
Nagaraju, G.; Ko, Y. H.; Yu, J. S. Self-assembled hierarchical β-cobalt hydroxide nanostructures on conductive textiles by one-step electrochemical deposition. CrystEngComm 2014, 16, 11027–11034.
Ko, Y. H.; Kim, S.; Yu, J. S. Electrochemical synthesis of hierarchical β-Ni(OH)2 nanostructures on conductive textiles. Mater. Lett. 2012, 84, 132–135.
Cai, D. P.; Liu, B.; Wang, D. D.; Liu, Y.; Wang, L. L.; Li, H.; Wang, Y. R.; Wang, C. X.; Li, Q. H.; Wang, T. H. Enhanced performance of supercapacitors with ultrathin mesoporous NiMoO4 nanosheets. Electrochim. Acta 2014, 125, 294–301.
Mai, L. Q.; Yang, F.; Zhao, Y. L.; Xu, X.; Xu, L.; Luo, Y. Z. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat. Commun. 2011, 2, 381.
Patil, U. M.; Nam, M. S.; Sohn, J. S.; Kulkarni, S. B.; Shin, R.; Kang, S.; Lee, S.; Kim, J. H.; Jun, S. C. Controlled electrochemical growth of Co(OH)2 flakes on 3D multilayered graphene foam for high performance supercapacitors. J. Mater. Chem. A 2014, 2, 19075–19083.
Xu, X. W.; Shen, J. F.; Li, N.; Ye, M. X. Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors. Electrochim. Acta 2014, 150, 23–34.
Ede, S. R.; Ramadoss, A.; Nithiyanantham, U.; Anantharaj, S.; Kundu, S. Bio-molecule assisted aggregation of ZnWO4 nanoparticles (NPs) into chain-like assemblies: Material for high performance supercapacitor and as catalyst for benzyl alcohol oxidation. Inorg. Chem. 2015, 54, 3851–3863.