Journal Home > Volume 8 , Issue 12

Amorphous nickel tungsten tetraoxide (NiWO4) nanostructures (NSs) were successfully synthesized on a flexible conductive fabric (CF) using a facile onestep electrochemical deposition (ED) method. With an applied external cathodic voltage (–1.8 V for 15 min), the amorphous NiWO4 NSs with burl-like morphologies adhered well on the seed-coated CF substrate. The burl-like amorphous NiWO4 NSs on CF (NiWO4 NSs/CF) are employed as a flexible and binder-free electrode for pseudocapacitors, which exhibit remarkable electrochemical properties with high specific capacitance (1, 190.2 F/g at 2 A/g), excellent cyclic stability (92% at 10 A/g), and good rate capability (765.7 F/g at 20 A/g) in 1 M KOH electrolyte solution. The superior electrochemical properties can be ascribed to the hierarchical structure and large specific surface area of the burl-like amorphous NiWO4 NSs/CF. This cost-effective facile method for the synthesis of metal tungsten tetraoxide nanomaterials on a flexible CF could be promising for advanced electronic and energy storage device applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly flexible conductive fabrics with hierarchically nanostructured amorphous nickel tungsten tetraoxide for enhanced electrochemical energy storage

Show Author's information Goli Nagaraju1Ramesh Kakarla2Sung Min Cha1Jae Su Yu1( )
Department of Electronics and Radio EngineeringInstitute for Wearable Convergence Electronics, Kyung Hee University1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do446-701Republic of Korea
Department of Environmental Science and Engineering, Kyung Hee University1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggido446-701Republic of Korea

Abstract

Amorphous nickel tungsten tetraoxide (NiWO4) nanostructures (NSs) were successfully synthesized on a flexible conductive fabric (CF) using a facile onestep electrochemical deposition (ED) method. With an applied external cathodic voltage (–1.8 V for 15 min), the amorphous NiWO4 NSs with burl-like morphologies adhered well on the seed-coated CF substrate. The burl-like amorphous NiWO4 NSs on CF (NiWO4 NSs/CF) are employed as a flexible and binder-free electrode for pseudocapacitors, which exhibit remarkable electrochemical properties with high specific capacitance (1, 190.2 F/g at 2 A/g), excellent cyclic stability (92% at 10 A/g), and good rate capability (765.7 F/g at 20 A/g) in 1 M KOH electrolyte solution. The superior electrochemical properties can be ascribed to the hierarchical structure and large specific surface area of the burl-like amorphous NiWO4 NSs/CF. This cost-effective facile method for the synthesis of metal tungsten tetraoxide nanomaterials on a flexible CF could be promising for advanced electronic and energy storage device applications.

Keywords: electrochemical deposition, amorphous NiWO4 nanostructures, conductive fabrics, electrochemical energy storage properties

References(59)

1

Jost, K.; Dion, G.; Gogotsi, Y. Textile energy storage in perspective. J. Mater. Chem. A 2014, 2, 10776–10787.

2

Lee, Y. H.; Kim, J. S.; Noh, J.; Lee, I.; Kim, H. J.; Choi, S.; Seo, J.; Jeon, S.; Kim, T. S.; Lee, J. Y. et al. Wearable textile battery rechargeable by solar energy. Nano Lett. 2013, 13, 5753–5761.

3

Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M. L.; Wang, Z. L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem., Int. Ed. 2011, 50, 1683–1687.

4

Hu, L. B; Chen, W.; Xie, X.; Liu, N.; Yang, Y.; Wu, H.; Yao, Y.; Pasta, M.; Alshareef, H. N.; Cui, Y. Symmetrical MnO2–carbon nanotube–textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 2011, 5, 8904–8913.

5

Lee, M.; Chen, C. Y.; Wang, S. H.; Cha, S. N.; Park, Y. J.; Kim, J. M.; Chou, L. J.; Wang, Z. L. A hybrid piezoelectric structure for wearable nanogenerators. Adv. Mater. 2012, 24, 1759–1764.

6

Fu, Y. P.; Cai, X.; Wu, H. W.; Lv, Z. B.; Hou, S. C.; Peng, M.; Yu, X.; Zou, D. C. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 2012, 24, 5713–5718.

7

Li, Q.; Wang, Z. L.; Li, G. R.; Guo, R.; Ding, L. X.; Tong, Y. X. Design and synthesis of MnO2/Mn/MnO2 sandwichstructured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Lett. 2012, 12, 3803–3807.

8

Huang, K. J.; Zhang, J. Z.; Shi, G. W.; Liu, Y. M. Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material. Electrochim. Acta 2014, 132, 397–403.

9

Li, S. Z.; Wen, J.; Mo, X. M.; Long, H.; Wang, H. N.; Wang, J. B.; Fang, G. J. Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode. J. Power Sources 2014, 256, 206–211.

10

Wang, K.; Zhang, L.; Ji, B. C.; Yuan, J. L. The thermal analysis on the stackable supercapacitor. Energy 2013, 59, 440–444.

11

Rajeswari, J.; Kishore, P. S.; Viswanathan, B.; Varadarajan, T. K. One-dimensional MoO2 nanorods for supercapacitor applications. Electrochem. Commun. 2009, 11, 572–575.

12

Yang, L.; Cheng, S.; Ding, Y.; Zhu, X. B.; Wang, Z. L.; Liu, M. L. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett. 2012, 12, 321–325.

13

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat Mater. 2008, 7, 845–854.

14

Burke, A. R&D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta 2007, 53, 1083–1091.

15

Zhang, X.; Yu, P.; Zhang, H. T.; Zhang, D. C.; Sun, X. Z.; Ma, Y. W. Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim. Acta 2013, 89, 523–529.

16

Krishnan, S. G.; Reddy, M. V.; Harilal, M.; Vidyadharan, B.; Misnon, I. I.; Rahim, M. H. A.; Ismail, J.; Jose, R. Characterization of MgCo2O4 as an electrode for high performance supercapacitors. Electrochim. Acta 2015, 161, 312–321.

17

Gupta, V.; Miura, N. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Mater. Lett. 2006, 60, 1466–1469.

18

Mondal, C.; Ganguly, M.; Manna, P. K.; Yusuf, S. M.; Pal, T. Fabrication of porous β-Co(OH)2 architecture at room temperature: A high performance supercapacitor. Langmuir 2013, 29, 9179–9187.

19

Wang, Q. F.; Wang, X. F.; Liu, B.; Yu, G.; Hou, X. J.; Chen, D.; Shen, G. Z. NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. J. Mater. Chem. A 2013, 1, 2468–2473.

20

Yu, L.; Zhang, G. Q.; Yuan, C. Z.; Lou, X. W. Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem. Comm. 2013, 49, 137–139.

21

Dong, B.; Zhou, H.; Liang, J.; Zhang, L.; Gao, G. X.; Ding, S. J. One-step synthesis of free-standing α-Ni(OH)2 nanosheets on reduced graphene oxide for high-performance supercapacitors. Nanotechnology 2014, 25, 435403.

22

Wang, H. W.; Xu, Z. J.; Yi, H.; Wei, H. G.; Guo, Z. H.; Wang, X. F. One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 2014, 7, 86–96.

23

Zhu, B. T.; Wang, Z. Y.; Ding, S. J.; Chen, J. S.; Lou, X. W. Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. RSC Adv. 2011, 1, 397–400.

24

Yuan, C. Z.; Li, J. Y.; Hou, L. R.; Zhang, X. G.; Shen, L. F.; Lou, X. W. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 2012, 22, 4592–4597.

25

Zhang, G. Q.; Lou, X. W. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 2013, 25, 976–979.

26

Zhang, G. H.; Wang, T. H.; Yu, X. Z.; Zhang, H. N.; Duan, H. G.; Lu, B. G. Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy 2013, 2, 586–594.

27

Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Chen, J.; Wang, X. L.; Gu, C. D.; Guan, C.; Luo, J. S.; Fan, H. J. Porous hydroxide nanosheets on preformed nanowires by electrodeposition: Branched nanoarrays for electrochemical energy storage. Chem. Mater. 2012, 24, 3793–3799.

28

Zhou, J.; Huang, Y.; Cao, X. H.; Ouyang, B.; Sun, W. P.; Tan, C. L.; Zhang, Y.; Ma, Q. L.; Liang, S. Q.; Yan, Q. Y. et al. Two-dimensional NiCo2O4 nanosheet-coated threedimensional graphene networks for high-rate, long-cyclelife supercapacitors. Nanoscale 2015, 7, 7035–7039.

29

Sun, X. X.; Wang, H. J.; Lei, Z. B.; Liu, Z. H.; Wei, L. Q. MnO2 nanoflakes grown on 3D graphite network for enhanced electrocapacitive performance. RSC Adv. 2014, 4, 30233–30240.

30

Li, W.; Xin, L. P.; Xu, X.; Liu, Q. D.; Zhang, M.; Ding, S. J.; Zhao, M. S.; Lou, X. J. Facile synthesis of three-dimensional structured carbon fiber-NiCo2O4-Ni(OH)2 high-performance electrode for pseudocapacitors. Sci. Rep. 2015, 5, 9277.

31

Ko, Y. H.; Kim, S.; Park, W.; Yu, J. S. Facile fabrication of forest-like ZnO hierarchical structures on conductive fabric substrate. Phys. Status Solidi Rapid Res. Lett. 2012, 6, 355–357.

32

Ye, S. B.; Feng, J. C.; Wu, P. Y. Deposition of threedimensional graphene aerogel on nickel foam as a binderfree supercapacitor electrode. ACS Appl. Mater. Interfaces 2013, 5, 7122–7129.

33

Xia, H.; Zhu, D. D.; Luo, Z. T.; Yu, Y.; Shi, X. Q.; Yuan, G. L.; Xie, J. P. Hierarchically structured Co3O4@Pt@MnO2 nanowire arrays for high-performance supercapacitors. Sci. Rep. 2013, 3, 2978.

34

Chen, Y. C.; Hsu, Y. K.; Lin, Y. G.; Lin, Y. K.; Horng, Y. Y.; Chen, L. C.; Chen, K. H. Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode. Electrochim. Acta 2011, 56, 7124–7130.

35

Li, W. C.; Mak, C. L.; Kan, C. W.; Hui, C. Y. Enhancing the capacitive performance of a textile-based CNT supercapacitor. RSC Adv. 2014, 4, 64890–64900.

36

Nagaraju, G.; Ko, Y. H.; Yu, J. S. Tricobalt tetroxide nanoplate arrays on flexible conductive fabric substrate: Facile synthesis and application for electrochemical supercapacitors. J. Power Sources 2015, 283, 251–259.

37

Ede, S. R.; Ramadoss, A.; Anantharaj, S.; Nithiyanantham, U.; Kundu, S. Enhanced catalytic and supercapacitor activities of DNA encapsulated β-MnO2 nanomaterials. Phys. Chem. Chem. Phys. 2014, 16, 21846–21859.

38

Bi, R. R.; Wu, X. L.; Cao, F. F.; Jiang, L. Y.; Guo, Y. G.; Wan, L. J. Highly dispersed RuO2 nanoparticles on carbon nanotubes: Facile synthesis and enhanced supercapacitance performance. J. Phys. Chem. C 2010, 114, 2448–2451.

39

Yang, Q.; Lu, Z.; Sun, X.; Liu, J. Ultrathin Co3O4 nanosheet arrays with high supercapacitive performance. Sci. Rep. 2013, 3, 3537.

40

Liang, K.; Tang, X. Z.; Hu, W. C. High-performance threedimensional nanoporous NiO film as a supercapacitor electrode. J. Mater. Chem. 2012, 22, 11062–11067.

41

Shivakumara, S.; Penki, T. R.; Munichandraiah, N. Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material. J. Solid State Electrochem. 2014, 18, 1057–1066.

42

Nithiyanantham, U.; Ramadoss, A.; Ede, S. R.; Kundu, S. DNA mediated wire-like clusters of self-assembled TiO2 nanomaterials: Supercapacitor and dye sensitized solar cell applications. Nanoscale 2014, 6, 8010–8023.

43

Yang, W. L.; Gao, Z.; Ma, J.; Wang, J.; Zhang, X. M.; Liu, L. H. Two-step electrodeposition construction of flower-onsheet hierarchical cobalt hydroxide nano-forest for highcapacitance supercapacitors. Dalton Trans. 2013, 42, 15706–15715.

44

Peng, S. J.; Li, L. L.; Wu, H. B.; Madhavi, S.; Lou, X. W. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater. 2015, 5, 1401172.

45

Xu, Y. N.; Wang, X. F.; An, C. H.; Wang, Y. J.; Jiao, L. F.; Yuan, H. T. Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors. J. Mater. Chem. A 2014, 2, 16480–16488.

46

Chen, H.; Hu, L. F.; Chen, M.; Yan, Y.; Wu, L. M. Nickel–cobalt layered double hydroxide nanosheets for highperformance supercapacitor electrode materials. Adv. Funct. Mater. 2014, 24, 934–942.

47

Yang, W. L.; Gao, Z.; Wang, J.; Ma, J.; Zhang, M. L.; Liu, L. H. Solvothermal one-step synthesis of Ni–Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 5443–5454.

48

Sun, B.; Zhao, W. X.; Wei, L. J.; Li, H. W.; Chen, P. Enhanced resistive switching effect upon illumination in self-assembled NiWO4 nano-nests. Chem. Commun. 2014, 50, 13142–13145.

49

Ling, C.; Zhou, L. Q.; Jia, H. F. First-principles study of crystalline CoWO4 as oxygen evolution reaction catalyst. RSC Adv. 2014, 4, 24692–24697.

50

Nithiyanantham, U.; Ede, S. R.; Anantharaj, S.; Kundu, S. Self-assembled NiWO4 nanoparticles into chain-like aggregates on DNA scaffold with pronounced catalytic and supercapacitor activities. Cryst. Growth Des. 2015, 15, 673–686.

51

Xing, X. T.; Gui, Y. L.; Zhang, G. J.; Song, C. Y. CoWO4 nanoparticles prepared by two methods displaying different structures and supercapacitive performances. Electrochim. Acta 2015, 157, 15–22.

52

Niu, L. Y.; Li, Z. P.; Xu, Y.; Sun, J. F.; Hong, W.; Liu, X. H.; Wang, J. Q.; Yang, S. R. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS. Appl. Mater. Interfaces 2013, 5, 8044–8052.

53

Nagaraju, G.; Ko, Y. H.; Yu, J. S. Self-assembled hierarchical β-cobalt hydroxide nanostructures on conductive textiles by one-step electrochemical deposition. CrystEngComm 2014, 16, 11027–11034.

54

Ko, Y. H.; Kim, S.; Yu, J. S. Electrochemical synthesis of hierarchical β-Ni(OH)2 nanostructures on conductive textiles. Mater. Lett. 2012, 84, 132–135.

55

Cai, D. P.; Liu, B.; Wang, D. D.; Liu, Y.; Wang, L. L.; Li, H.; Wang, Y. R.; Wang, C. X.; Li, Q. H.; Wang, T. H. Enhanced performance of supercapacitors with ultrathin mesoporous NiMoO4 nanosheets. Electrochim. Acta 2014, 125, 294–301.

56

Mai, L. Q.; Yang, F.; Zhao, Y. L.; Xu, X.; Xu, L.; Luo, Y. Z. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat. Commun. 2011, 2, 381.

57

Patil, U. M.; Nam, M. S.; Sohn, J. S.; Kulkarni, S. B.; Shin, R.; Kang, S.; Lee, S.; Kim, J. H.; Jun, S. C. Controlled electrochemical growth of Co(OH)2 flakes on 3D multilayered graphene foam for high performance supercapacitors. J. Mater. Chem. A 2014, 2, 19075–19083.

58

Xu, X. W.; Shen, J. F.; Li, N.; Ye, M. X. Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors. Electrochim. Acta 2014, 150, 23–34.

59

Ede, S. R.; Ramadoss, A.; Nithiyanantham, U.; Anantharaj, S.; Kundu, S. Bio-molecule assisted aggregation of ZnWO4 nanoparticles (NPs) into chain-like assemblies: Material for high performance supercapacitor and as catalyst for benzyl alcohol oxidation. Inorg. Chem. 2015, 54, 3851–3863.

File
nr-8-12-3749_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 May 2015
Revised: 24 July 2015
Accepted: 03 August 2015
Published: 01 October 2015
Issue date: December 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2014-069441).

Return