Journal Home > Volume 8 , Issue 11

Activation of molecular O2 is the most critical step in gold-catalyzed oxidation reactions; however, the underlying mechanisms of this process remain under debate. In this study, we propose an alternative O2 activation pathway with the assistance of hydrogen-containing substrates using density functional theory. It is demonstrated that the co-adsorbed H-containing substrates (R–H) not only enhance the adsorption of O2, but also transfer a hydrogen atom to the adjacent O2, leading to O2 activation by its transformation to a hydroperoxyl (OOH) radical species. The activation barriers of the H-transfer from 16 selected R–H compounds (H2O, CH3OH, NH2CHCOOH, CH3CH=CH2, (CH3)2SiH2, etc.) to the co-adsorbed O2 are lower than 0.50 eV in most cases, indicating the feasibility of the activation of O2 via OOH under mild conditions. The formed OOH oxidant, with an increased O–O bond length of ~1.45 Å, either participates directly in oxidation reactions through the end-on oxygen atom, or dissociates into atomic oxygen and hydroxyl (OH) by crossing a fairly low energy barrier of 0.24 eV. Using CO oxidation as a probe, we have found that OOH has superior activity than activated O2 and atomic oxygen. This study reveals a new pathway for the activation of O2, and may provide insight into the oxidation catalysis of nanosized gold.


menu
Abstract
Full text
Outline
About this article

Hydrogenation of molecular oxygen to hydroperoxyl: An alternative pathway for O2 activation on nanogold catalysts

Show Author's information Chun-Ran Chang1,2( )Zheng-Qing Huang1Jun Li2( )
School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'an710049China
Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of EducationTsinghua UniversityBeijing100084China

Abstract

Activation of molecular O2 is the most critical step in gold-catalyzed oxidation reactions; however, the underlying mechanisms of this process remain under debate. In this study, we propose an alternative O2 activation pathway with the assistance of hydrogen-containing substrates using density functional theory. It is demonstrated that the co-adsorbed H-containing substrates (R–H) not only enhance the adsorption of O2, but also transfer a hydrogen atom to the adjacent O2, leading to O2 activation by its transformation to a hydroperoxyl (OOH) radical species. The activation barriers of the H-transfer from 16 selected R–H compounds (H2O, CH3OH, NH2CHCOOH, CH3CH=CH2, (CH3)2SiH2, etc.) to the co-adsorbed O2 are lower than 0.50 eV in most cases, indicating the feasibility of the activation of O2 via OOH under mild conditions. The formed OOH oxidant, with an increased O–O bond length of ~1.45 Å, either participates directly in oxidation reactions through the end-on oxygen atom, or dissociates into atomic oxygen and hydroxyl (OH) by crossing a fairly low energy barrier of 0.24 eV. Using CO oxidation as a probe, we have found that OOH has superior activity than activated O2 and atomic oxygen. This study reveals a new pathway for the activation of O2, and may provide insight into the oxidation catalysis of nanosized gold.

Keywords: adsorption, dissociation, O2 activation, gold cluster, hydroperoxyl

References(86)

1

Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ℃. Chem. Lett. 1987, 16, 405–408.

2

Hutchings, G. J. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. J. Catal. 1985, 96, 292–295.

3

Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.

4

Nijhuis, T. A.; Visser, T.; Weckhuysen, B. M. Mechanistic study into the direct epoxidation of propene over gold/titania catalysts. J. Phys. Chem. B 2005, 109, 19309–19319.

5

Sinha, A. K.; Seelan, S.; Tsubota, S.; Haruta, M. Catalysis by gold nanoparticles: Epoxidation of propene. Top. Catal. 2004, 29, 95–102.

6

McEwan, L.; Julius, M.; Roberts, S.; Fletcher, J. C. Q. A review of the use of gold catalysts in selective hydrogenation reactions. Gold Bull. 2010, 43, 298–306.

7

Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332–334.

8

Della Pina, C.; Falletta, E.; Prati, L.; Rossi, M. Selective oxidation using gold. Chem. Soc. Rev. 2008, 37, 2077–2095.

9

Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938.

10

Bond, G. Mechanisms of the gold-catalysed water-gas shift. Gold Bull. 2009, 42, 337–342.

11

Hashmi, A. S. K.; Hutchings, G. J. Gold catalysis. Angew. Chem., Int. Ed. 2006, 45, 7896–7936.

12

Green, I. X.; Tang, W.; Neurock, M.; Yates J. T. Spectroscopic observation of dual catalytic sites during oxidation of COon a Au/TiO2 catalyst. Science 2011, 333, 736–739.

13

Widmann, D.; Behm, R. J. Activation of molecular oxygen and the nature of the active oxygen species for COoxidation on oxide supported Au catalysts. Acc. Chem. Res. 2014, 47, 740–749.

14

Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T. Insights into catalytic oxidation at the Au/TiO2 dual perimeter sites. Acc. Chem. Res. 2013, 47, 805–815.

15

Wang, Y. -G.; Mei, D.; Glezakou, V. -A.; Li, J.; Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 2015, 6, 6511.

16

Wang, Y. -G.; Mei, D. H.; Li, J.; Rousseau, R. DFT+U study on the localized electronic states and their potential role during H2O dissociation and COoxidation processes on CeO2(111) surface. J. Phys. Chem. C 2013, 117, 23082–23089.

17

Liu, L. M.; McAllister, B.; Ye, H. Q.; Hu, P. Identifying an O2 supply pathway in COoxidation on Au/TiO2(110): A density functional theory study on the intrinsic role of water. J. Am. Chem. Soc. 2006, 128, 4017–4022.

18

Chen, M. S.; Cai, Y.; Yan, Z.; Goodman, D. W. On the origin of the unique properties of supported Au nanoparticles. J. Am. Chem. Soc. 2006, 128, 6341–6346.

19

Remediakis, I. N.; Lopez, N.; Nørskov, J. K. CO oxidation on rutile-supported Au nanoparticles. Angew. Chem., Int. Ed. 2005, 44, 1824–1826.

20

Wörz, A. S.; Heiz, U.; Cinquini, F.; Pacchioni, G. Charging of Au atoms on TiO2 thin films from COvibrational spectroscopy and DFT calculations. J. Phys. Chem. B 2005, 109, 18418–18426.

21

Madsen, G. K. H.; Hammer, B. Effect of subsurface Tiinterstitials on the bonding of small gold clusters on rutile TiO2(110). J. Chem. Phys. 2009, 130, 044704.

22

Yoon, B.; Häkkinen, H.; Landman, U.; Wörz, A. S.; Antonietti, J. -M.; Abbet, S.; Judai, K.; Heiz, U. Charging effects on bonding and catalyzed oxidation of COon Au8 clusters on MgO. Science 2005, 307, 403–407.

23

Fu, L.; Wu, N. Q.; Yang, J. H.; Qu, F.; Johnson, D. L.; Kung, M. C.; Kung, H. H.; Dravid, V. P. Direct evidence of oxidized gold on supported gold catalysts. J. Phys. Chem. B 2005, 109, 3704–3706.

24

Bond, G. C.; Thompson, D. T. Gold-catalysed oxidation of carbon monoxide. Gold Bull. 2000, 33, 41–50.

25

Wang, J. G.; Hammer, B. Role of Au+ in supporting and activating Au7 on TiO2(110). Phys. Rev. Lett. 2006, 97, 136107.

26

Liu, Z. P.; Jenkins, S. J.; King, D. A. Origin and activity of oxidized gold in water-gas-shift catalysis. Phys. Rev. Lett. 2005, 94, 196102.

27

Zhang, C. J.; Michaelides, A.; King, D. A.; Jenkins, S. J. Positive charge states and possible polymorphism of gold nanoclusters on reduced ceria. J. Am. Chem. Soc. 2010, 132, 2175–2182.

28

Wang, Y. -G.; Yoon, Y.; Glezakou, V. -A.; Li, J.; Rousseau, R. The role of reducible oxide–metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of COoxidation on Au/TiO2 from ab initio molecular dynamics. J. Am. Chem. Soc. 2013, 135, 10673–10683.

29

Cox, D. M.; Brickman, R.; Creegan, K.; Kaldor, A. Gold clusters: Reactions and deuterium uptake. Z. Phys. D-Atoms, Molecules and Clusters 1991, 19, 353–355.

30

Lee, T. H.; Ervin, K. M. Reactions of copper group cluster anions with oxygen and carbon monoxide. J. Phys. Chem. 1994, 98, 10023–10031.

31

Salisbury, B. E.; Wallace, W. T.; Whetten, R. L. Lowtemperature activation of molecular oxygen by gold clusters: A stoichiometric process correlated to electron affinity. Chem. Phys. 2000, 262, 131–141.

32

Ding, X. L.; Li, Z. Y.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. Adsorption energies of molecular oxygen on Au clusters. J. Chem. Phys. 2004, 120, 9594–9600.

33

Taylor, K. J.; Pettiette-Hall, C. L.; Cheshnovsky, O.; Smalley, R. E. Ultraviolet photoelectron spectra of coinage metal clusters. J. Chem. Phys. 1992, 96, 3319–3329.

34

Woodham, A. P.; Meijer, G.; Fielicke, A. Activation of molecular oxygen by anionic gold clusters. Angew. Chem., Int. Ed. 2012, 51, 4444–4447.

35

Huang, W.; Zhai, H. -J.; Wang, L. -S. Probing the interactions of O2 with small gold cluster anions (Aun-, n = 1-7): Chemisorption vs. physisorption. J. Am. Chem. Soc. 2010, 132, 4344–4351.

36

Pal, R.; Wang, L. -M.; Pei, Y.; Wang, L. -S.; Zeng, X. C. Unraveling the mechanisms of O2 activation by sizeselected gold clusters: Transition from superoxo to peroxo chemisorption. J. Am. Chem. Soc. 2012, 134, 9438–9445.

37

Hutchings, G. J.; Hall, M. S.; Carley, A. F.; Landon, P.; Solsona, B. E.; Kiely, C. J.; Herzing, A.; Makkee, M.; Moulijn, J. A.; Overweg, A. et al. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxidesupported gold. J. Catal. 2006, 242, 71–81.

38

Guzman, J.; Gates, B. C. Oxidation states of gold in MgO-supported complexes and clusters: Characterization by X-ray absorption spectroscopy and temperature-programmed oxidation and reduction. J. Phys. Chem. B 2003, 107, 2242–2248.

39

Guzman, J.; Gates, B. C. Catalysis by supported gold: Correlation between catalytic activity for COoxidation and oxidation states of gold. J. Am. Chem. Soc. 2004, 126, 2672–2673.

40

Yoon, B.; Häkkinen, H.; Landman, U. Interaction of O2 with gold clusters: Molecular and dissociative adsorption. J. Phys. Chem. A 2003, 107, 4066–4071.

41

Woodham, A. P.; Fielicke, A. Superoxide formation on isolated cationic gold clusters. Angew. Chem., Int. Ed. 2014, 53, 6554–6557.

42

Zhao, Y.; Khetrapal, N. S.; Li, H.; Gao, Y.; Zeng, X. C. Interaction between O2 and neutral/charged Aun (n = 1–3) clusters: A comparative study between density-functional theory and coupled cluster calculations. Chem. Phys. Lett. 2014, 592, 127–131.

43

Woodham, A. P.; Meijer, G.; Fielicke, A. Charge separation promoted activation of molecular oxygen by neutral gold clusters. J. Am. Chem. Soc. 2013, 135, 1727–1730.

44

Wang, Y.; Gong, X. G. First-principles study of interaction of cluster Au32 with CO, H2, and O2. J. Chem. Phys. 2006, 125, 124703.

45

Barrio, L.; Liu, P.; Rodriguez, J. A.; Campos-Martin, J. M.; Fierro, J. L. G. Effects of hydrogen on the reactivity of O2 toward gold nanoparticles and surfaces. J. Phys. Chem. C 2007, 111, 19001–19008.

46

Roldán, A.; Gonzá lez, S.; Ricart, J. M.; Illas, F. Critical size for O2 dissociation by Au nanoparticles. ChemPhysChem 2009, 10, 348–351.

47

Roldán, A.; Ricart, J. M.; Illas, F.; Pacchioni, G. O2 adsorption and dissociation on neutral, positively and negatively charged Aun (n = 5–79) clusters. Phys. Chem. Chem. Phys. 2010, 12, 10723–10729.

48

Lyalin, A.; Taketsugu, T. Reactant-promoted oxygen dissociation on gold clusters. J. Phys. Chem. Lett. 2010, 1, 1752–1757.

49

Gao, Y.; Zeng, X. C. Water-promoted O2 dissociation on small-sized anionic gold clusters. ACS Catal. 2012, 2, 2614–2621.

50

Liu, C. Y.; Tan, Y. Z.; Lin, S. S.; Li, H.; Wu, X. J.; Li, L.; Pei, Y.; Zeng, X. C. CO self-promoting oxidation on nanosized gold clusters: Triangular Au3 active site and COinduced O–O scission. J. Am. Chem. Soc. 2013, 135, 2583–2595.

51

Deng, X. Y.; Min, B. K.; Guloy, A.; Friend, C. M. Enhancement of O2 dissociation on Au(111) by adsorbed oxygen: Implications for oxidation catalysis. J. Am. Chem. Soc. 2005, 127, 9267–9270.

52

Chang, C. -R.; Wang, Y. -G.; Li, J. Theoretical investigations of the catalytic role of water in propene epoxidation on gold nanoclusters: A hydroperoxyl-mediated pathway. Nano Res. 2011, 4, 131–142.

53

Chang, C. -R.; Yang, X. -F.; Long, B.; Li, J. A water-promoted mechanism of alcohol oxidation on a Au(111) surface: Understanding the catalytic behavior of bulk gold. ACS Catal. 2013, 3, 1693–1699.

54

Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

55

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

56

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

57

Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 1993, 80, 1431–1441.

58

Jiang, D. -E.; Walter, M. Au40: A large tetrahedral magic cluster. Phys. Rev. B 2011, 84, 193402.

59

Zhu, B. E.; Thrimurthulu, G.; Delannoy, L.; Louis, C.; Mottet, C.; Creuze, J.; Legrand, B.; Guesmi, H. Evidence of Pd segregation and stabilization at edges of AuPd nanoclusters in the presence of CO: A combined DFT and DRIFTS study. J. Catal. 2013, 308, 272–281.

60

Paz-Borbón, L. O.; Johnston, R. L.; Barcaro, G.; Fortunelli, A. Structural motifs, mixing, and segregation effects in 38-atom binary clusters. J. Chem. Phys. 2008, 128, 134517.

61

Pittaway, F.; Paz-Borbón, L. O.; Johnston, R. L.; Arslan, H.; Ferrando, R.; Mottet, C.; Barcaro, G.; Fortunelli, A. Theoretical studies of palladium-gold nanoclusters: Pd-Au clusters with up to 50 atoms. J. Phys. Chem. C 2009, 113, 9141–9152.

62

Ismail, R.; Johnston, R. L. Investigation of the structures and chemical ordering of small Pd-Au clusters as a function of composition and potential parameterisation. Phys. Chem. Chem. Phys. 2010, 12, 8607–8619.

63

West, P. S.; Johnston, R. L.; Barcaro, G.; Fortunelli, A. The effect of CO and H chemisorption on the chemical ordering of bimetallic clusters. J. Phys. Chem. C 2010, 114, 19678–19686.

64

Roldán, A.; Manel Ricart, J.; Illas, F. Influence of the exchange-correlation potential on the description of the molecular mechanism of oxygen dissociation by Au nanoparticles. Theor. Chem. Acc. 2009, 123, 119–126.

65

Baker, J. An algorithm for the location of transition states. J. Comput. Chem. 1986, 7, 385–395.

66

Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 2003, 28, 250–258.

67

Sahoo, B.; Nayak, N. C.; Samantaray, A.; Pujapanda, P. K. Inorganic Chemsitry; PHI Learning: New Delhi, 2012.

68

Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.

69

Daté, M.; Haruta, M. Moisture effect on COoxidation over Au/TiO2 catalyst. J. Catal. 2001, 201, 221–224.

70

Huang, J. H.; Akita, T.; Faye, J.; Fujitani, T.; Takei, T.; Haruta, M. Propene epoxidation with dioxygen catalyzed by gold clusters. Angew. Chem., Int. Ed. 2009, 48, 7862–7866.

71

Lee, S.; Molina, L. M.; López, M. J.; Alonso, J. A.; Hammer, B.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Pellin, M. J. et al. Selective propene epoxidation on immobilized Au6–10 clusters: The effect of hydrogen and water on activity and selectivity. Angew. Chem., Int. Ed. 2009, 48, 1467–1471.

72

Ojeda, M.; Iglesia, E. Catalytic epoxidation of propene with H2O-O2 reactants on Au/TiO2. Chem. Commun. 2009, 352–354.

73

Vöhringer-Martinez, E.; Hansmann, B.; Hernandez, H.; Francisco, J. S.; Troe, J.; Abel, B. Water catalysis of a radical-molecule gas-phase reaction. Science 2007, 315, 497–501.

74

Long, B.; Tan, X. -F.; Ren, D. -S.; Zhang, W. -J. Theoretical studies on energetics and mechanisms of the decomposition of CF3OH. Chem. Phys. Lett. 2010, 492, 214–219.

75

Long, B.; Zhang, W. -J.; Tan, X. -F.; Long, Z. -W.; Wang, Y. -B.; Ren, D. -S. Theoretical study on the gas phase reaction of sulfuric acid with hydroxyl radical in the presence of water. J. Phys. Chem. A 2011, 115, 1350–1357.

76

Long, B.; Chang, C. R.; Long, Z. W.; Wang, Y. B.; Tan, X. F.; Zhang, W. J. Nitric acid catalyzed hydrolysis of SO3 in the formation of sulfuric acid: A theoretical study. Chem. Phys. Lett. 2013, 581, 26–29.

77

Long, B.; Tan, X. -F.; Chang, C. -R.; Zhao, W. -X.; Long, Z. -W.; Ren, D. -S.; Zhang, W. -J. Theoretical studies on gas-phase reactions of sulfuric acid catalyzed hydrolysis of formaldehyde and formaldehyde with sulfuric acid and H2SO4…H2O complex. J. Phys. Chem. A 2013, 117, 5106–5116.

78

Saavedra, J.; Doan, H. A.; Pursell, C. J.; Grabow, L. C.; Chandler, B. D. The critical role of water at the gold-titania interface in catalytic COoxidation. Science 2014, 345, 1599–1602.

79

Shilov, A. E.; Shul'pin, G. B. Activation of C–H bonds by metal complexes. Chem. Rev. 1997, 97, 2879–2932.

80

Zhou, M. F.; Zhao, Y. Y.; Gong, Y.; Li, J. Formation and characterization of the XeOO+ cation in solid argon. J. Am. Chem. Soc. 2006, 128, 2504–2505.

81

Lopez, N.; Nørskov, J. K. Catalytic COoxidation by a gold nanoparticle: A density functional study. J. Am. Chem. Soc. 2002, 124, 11262–11263.

82

Sanchez, A.; Abbet, S.; Heiz, U.; Schneider, W. D.; Häkkinen, H.; Barnett, R. N.; Landman, U. When gold is not noble: Nanoscale gold catalysts. J. Phys. Chem. A 1999, 103, 9573–9578.

83

Liu, Z. P.; Gong, X. Q.; Kohanoff, J.; Sanchez, C.; Hu, P. Catalytic role of metal oxides in gold-based catalysts: A first principles study of COoxidation on TiO2 supported Au. Phys. Rev. Lett. 2003, 91, 266102.

84

Ide, M. S.; Davis, R. J. The important role of hydroxyl on oxidation catalysis by gold nanoparticles. Acc. Chem. Res. 2013, 47, 825–833.

85

Mullen, G. M.; Gong, J. L.; Yan, T.; Pan, M.; Mullins, C. B. The effects of adsorbed water on gold catalysis and surface chemistry. Top. Catal. 2013, 56, 1499–1511.

86

Zhang, W. H.; Huang, W. X.; Yang, J. L. Theoretical investigation of gold based model catalysts. Sci. China Chem. 2015, 58, 565–573.

Publication history
Copyright
Acknowledgements

Publication history

Received: 15 May 2015
Revised: 25 July 2015
Accepted: 03 August 2015
Published: 01 October 2015
Issue date: November 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2011CB932400), the National Natural Science Foundation of China (No. 21543005), the China Postdoctoral Science Foundation (No. 2014M562391), and the Fundamental Research Funds for the Central Universities (No. xjj2014064). The calculations were performed by using supercomputers at the Computer Network Information Center, Chinese Academy of Sciences, Tsinghua National Laboratory for Information Science and Technology, and the Shanghai Supercomputing Center.

Return