Journal Home > Volume 8 , Issue 11

Catalysts for oxygen and hydrogen evolution reactions (OER/HER) are at the heart of renewable green energy sources such as water splitting. Although incredible efforts have been made to develop efficient catalysts for OER and HER, great challenges still remain in the development of bifunctional catalysts. Here, we report a novel hybrid of Co3O4 embedded in tubular nanostructures of graphitic carbon nitride (GCN) and synthesized through a facile, large-scale chemical method at low temperature. Strong synergistic effects between Co3O4 and GCN resulted in excellent performance as a bifunctional catalyst for OER and HER. The high surface area, unique tubular nanostructure, and composition of the hybrid made all redox sites easily available for catalysis and provided faster ionic and electronic conduction. The Co3O4@GCN tubular nanostructured (TNS) hybrid exhibited the lowest overpotential (0.12 V) and excellent current density (147 mA/cm2) in OER, better than benchmarks IrO2 and RuO2, and with superior durability in alkaline media. Furthermore, the Co3O4@GCN TNS hybrid demonstrated excellent performance in HER, with a much lower onset and overpotential, and a stable current density. It is expected that the Co3O4@GCN TNS hybrid developed in this study will be an attractive alternative to noble metals catalysts in large scale water splitting and fuel cells.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions

Show Author's information Muhammad Tahir1,5,§Nasir Mahmood2,§Xiaoxue Zhang3Tariq Mahmood1Faheem. K. Butt1Imran Aslam1M. Tanveer1Faryal Idrees1Syed Khalid1Imran Shakir4Yiming Yan3Jijun Zou5Chuanbao Cao1( )Yanglong Hou2( )
Research Centre of Materials ScienceBeijing Institute of TechnologyBeijing100081China
Department of Materials Science and EngineeringPeking UniversityBeijing100081China
Beijing Key Laboratory for Chemical Power Source and Green CatalystSchool of Chemical Engineering and EnvironmentBeijing Institution of TechnologyBeijing100081China
Sustainable Energy Technologies (SET) center building No 3Room 1c23College of EngineeringKing Saud UniversityPO BOX 800Riyadh11421Kingdom of Saudi Arabia
Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University; Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China

§ These authors contributed equally to this work.

Abstract

Catalysts for oxygen and hydrogen evolution reactions (OER/HER) are at the heart of renewable green energy sources such as water splitting. Although incredible efforts have been made to develop efficient catalysts for OER and HER, great challenges still remain in the development of bifunctional catalysts. Here, we report a novel hybrid of Co3O4 embedded in tubular nanostructures of graphitic carbon nitride (GCN) and synthesized through a facile, large-scale chemical method at low temperature. Strong synergistic effects between Co3O4 and GCN resulted in excellent performance as a bifunctional catalyst for OER and HER. The high surface area, unique tubular nanostructure, and composition of the hybrid made all redox sites easily available for catalysis and provided faster ionic and electronic conduction. The Co3O4@GCN tubular nanostructured (TNS) hybrid exhibited the lowest overpotential (0.12 V) and excellent current density (147 mA/cm2) in OER, better than benchmarks IrO2 and RuO2, and with superior durability in alkaline media. Furthermore, the Co3O4@GCN TNS hybrid demonstrated excellent performance in HER, with a much lower onset and overpotential, and a stable current density. It is expected that the Co3O4@GCN TNS hybrid developed in this study will be an attractive alternative to noble metals catalysts in large scale water splitting and fuel cells.

Keywords: carbon nitride, cobalt oxide, oxygen evolution reaction, hydrogen evolution reaction, bifunctional catalyst

References(45)

1

Ali, Z.; Cao, C. B.; Li, J. L.; Wang, Y. L.; Cao, T.; Tanveer, M.; Tahir, M.; Idrees, F.; Butt, F. K. Effect of synthesis technique on electrochemical performance of bismuth selenide. J. Power Sources 2013, 229, 216–222.

2

Butt, F. K.; Tahir, M.; Cao, C. B.; Idrees, F.; Ahmed, R.; Khan, W. S.; Ali, Z.; Mahmood, N.; Tanveer, M.; Mahmood, A. et al. Synthesis of novel ZnV2O4 hierarchical nanospheres and their applications as electrochemical supercapacitor and hydrogen storage material. ACS Appl. Mater. Interfaces 2014, 6, 13635–13641.

3

Li, J. Y.; Wang, G. X.; Wang, J.; Miao, S.; Wei, M. M.; Yang, F.; Yu, L.; Bao, X. H. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Res. 2014, 7, 1519–1527.

4

Kim, W. -S.; Hwa, Y.; Kim, H. -C.; Choi, J. -H.; Sohn, H. -J.; Hong, S. -H. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 2014, 7, 1128–1136.

5

Mahmood, N.; Zhang, C. Z.; Liu, F.; Zhu, J. H.; Hou, Y. L. Hybrid of Co3Sn2@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode. ACS Nano 2013, 7, 10307–10318.

6

Mahmood, N.; Hou, Y. L. Electrode nanostructures inlithium-based batteries. Adv. Sci. 2014, 1, DOI: 10.1002/advs.201400012.

7

Mahmood, N.; Zhang, C. Z.; Hou, Y. L. Nickel sulfide/nitrogen-doped graphene composites: Phase-controlled synthesis and high performance anode materials for lithium ion batteries. Small 2013, 9, 1321–1328.

8

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

9

Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Res. 2014, 7, 1205–1214.

10

Hou, J. H.; Cao, C. B.; Idrees, F.; Ma, X. L. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556–2564.

11

Qing, L.; Mahmood, N.; Zhu, J. H.; Hou, Y. L.; Sun, S. H. Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 2014, 9, 668–683.

12

Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932–4937.

13

Mahmood, N.; Zhang, C. Z.; Jiang, J.; Liu, F.; Hou, Y. L. Multifunctional Co3S4/graphene composites for lithium ion batteries and oxygen reduction reaction. Chem. —Eur. J. 2013, 19, 5183–5190.

14

Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.

15

Subbaraman, R.; Tripkovic, D.; Chang, K. -C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

16

Kibsgaard, J.; Jaramillo, T. F. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 14433–14437.

17

Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2014, 53, 4372–4376.

18

Zhao, Y.; Zhao, F.; Wang, X. P.; Xu, C. Y.; Zhang, Z. P.; Shi, G. Q.; Qu, L. T. Graphitic carbon nitride nanoribbons: Graphene-assisted formation and synergic function for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 13934–13939.

19

Jahan, M.; Liu, Z. L.; Loh, K. P. A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 2013, 23, 5363–5372.

20

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

21

Kanan, M. W.; Nocera, D. G. In situ formation of an oxygenevolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

22

Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584–7588.

23

Zhou, W. J.; Wu, X. -J.; Cao, X. H.; Huang, X.; Tan, C. L; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924.

24

Tahir, M.; Cao, C. B.; Butt, F. K.; Idrees, F.; Mahmood, N.; Ali, Z.; Aslam, I.; Tanveer, M.; Rizwan, M.; Mahmood, T. Tubular graphitic-C3N4: A prospective material for energy storage and green photocatalysis. J. Mater. Chem. A 2013, 1, 13949–13955.

25

Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 7281–7285.

26

Martin, D. J.; Qiu, K. P.; Shevlin, S. A.; Handoko, A. D.; Chen, X. W.; Guo, Z. X.; Tang, J. W. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem., Int. Ed. 2014, 53, 9240–9245.

27

Li, Q.; Yang, J. P.; Feng, D.; Wu, Z. X.; Wu, Q. L.; Park, S. S.; Ha, C. -S.; Zhao, D. Y. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Res. 2010, 3, 632–642.

28

Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209.

29

Han, Q.; Zhao, F.; Hu, C. G.; Lv, L. X.; Zhang, Z. P.; Chen, N.; Qu, L. T. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 2015, 8, 1718–1728.

30

Tahir, M.; Cao, C. B.; Mahmood, N.; Butt, F. K.; Mahmood, A.; Idrees, F.; Hussain, S.; Tanveer, M.; Ali, Z.; Aslam, I. Multifunctional g-C3N4 nanofibers: A template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl. Mater. Interfaces 2014, 6, 1258–1265.

31

Tahir, M.; Cao, C. B.; Butt, F. K.; Butt, S.; Idrees, F.; Ali, Z.; Aslam, I.; Tanveer, M.; Mahmood, A.; Mahmood, N. Large scale production of novel g-C3N4 micro strings with high surface area and versatile photodegradation ability. CrystEngComm 2014, 16, 1825–1830.

32

Tahir, M.; Mahmood, N.; Zhu, J. H.; Mahmood, A.; Butt, F. K.; Rizwan, S.; Aslam, I.; Tanveer, M.; Idrees, F.; Shakir, I. et al. One dimensional graphitic carbon nitrides as effective metal-free oxygen reduction catalysts. Sci. Rep. 2015, 5, 12389.

33

Gogotsi, Y. What nano can do for energy storage. ACS Nano 2014, 8, 5369–5371.

34

Mahmood, N.; Zhang, C. Z.; Yin, H.; Hou, Y. L. Graphenebased nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J. Mater. Chem. A 2014, 2, 15–32.

35

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

36

Zhang, C. Z.; Hao, R.; Liao, H. B.; Hou, Y. L. Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy 2013, 2, 88–97.

37

Choi, C. H.; Park, S. H.; Woo, S. I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 2012, 6, 7084–7091.

38

Xing, T.; Zheng, Y.; Li, L. H.; Cowie, B. C. C.; Gunzelmann, D.; Qiao, S. Z.; Huang, S. M.; Chen, Y. Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene. ACS Nano 2014, 8, 6856–6862.

39

Mahmood, N.; Tahir, M.; Mahmood, A.; Zhu, J. H.; Cao, C. B.; Hou, Y. L. Chlorine-doped carbonated cobalt hydroxide for supercapacitors with enormously high pseudocapacitive performance and energy density. Nano Energy 2015, 11, 267–276.

40

Yin, H.; Zhang, C. Z.; Liu, F.; Hou, Y. L. Hybrid of iron nitride and nitrogen-doped graphene aerogel as synergistic catalyst for oxygen reduction reaction. Adv. Funct. Mater. 2014, 24, 2930–2937.

41

Cheng, F. Y.; Shen, J.; Peng, B.; Pan, Y. D.; Tao, Z. L.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79–84.

42

Masa, J.; Xia, W.; Sinev, I.; Zhao, A. Q.; Sun, Z. Y.; Grützke, S.; Weide, P.; Muhler, M.; Schuhmann, W. MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew. Chem., Int. Ed. 2014, 53, 8508–8512.

43

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

44

Ma, T. Y.; Ran, J. R.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes. Angew. Chem., Int. Ed. 2014, 54, 4646–4650.

45

Peng, S. J.; Li, L. L.; Han, X. P.; Sun, W. P.; Srinivasan, M.; Mhaisalkar, S. G.; Cheng, F. Y.; Yan, Q. Y.; Chen, J.; Ramakrishna, S. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 12594–12599.

File
nr-8-11-3725_ESM.pdf (4.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 June 2015
Revised: 29 July 2015
Accepted: 30 July 2015
Published: 01 October 2015
Issue date: November 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

Work at Beijing Institute of Technology was supported by the National Natural Science Foundation of China (Nos. 23171023 and 50972017) and Doctoral Program of the Ministry of Education of China (No. 20101101110026); Work at Peking University was supported by the NSFC-RGC Joint Research Scheme (No. 51361165201), the National Natural Science Foundation of China (Nos. 51125001 and 51172005), Beijing Natural Science Foundation (No. 2122022) and Doctoral Program of the Ministry of Education of China (No. 20120001110078). Deanship of Scientific Research at King Saud University through Prolific Research Group Project (No. PRG-1436-25).

Return