Journal Home > Volume 8 , Issue 11

Anodic oxidization (AO) is one of the most important methods available for fabricating mesoporous Al2O3, which can be conducted at either high potential or low potential; however, the need for an external electricity power source limits its applications. In this work, a novel self-powered electrochemical anodic oxidization (SPAO) system was introduced for preparing mesoporous Al2O3, by using newly-invented triboelectric nanogenerator (TENG) arrays driven by wind power. Using the controllable voltage output of the TENG arrays, the SPAO system was shown to regulate the pore depth and pore size of the mesoporous Al2O3. In contrast to traditional AO systems, this technique takes advantage of the high output voltage of TENG arrays without any additional energy costs. In addition, the SPAO system can be used for the preparation of other mesoporous materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-powered electrochemical anodic oxidation: A new method for preparation of mesoporous Al2O3 without applying electricity

Show Author's information Huarui Zhu1Ying Xu1Yu Han1Shuwen Chen1Tao Zhou1Magnus Willander1Xia Cao1,2( )Zhonglin Wang1,3( )
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
School of Chemistry and Biological EngineeringUniversity of Science & Technology BeijingBeijing100083China
School of Material Science and EngineeringGeorgia Institute of TechnologyAtlanta, Georgia30332-0245USA

Abstract

Anodic oxidization (AO) is one of the most important methods available for fabricating mesoporous Al2O3, which can be conducted at either high potential or low potential; however, the need for an external electricity power source limits its applications. In this work, a novel self-powered electrochemical anodic oxidization (SPAO) system was introduced for preparing mesoporous Al2O3, by using newly-invented triboelectric nanogenerator (TENG) arrays driven by wind power. Using the controllable voltage output of the TENG arrays, the SPAO system was shown to regulate the pore depth and pore size of the mesoporous Al2O3. In contrast to traditional AO systems, this technique takes advantage of the high output voltage of TENG arrays without any additional energy costs. In addition, the SPAO system can be used for the preparation of other mesoporous materials.

Keywords: triboelectric nanogenerator, mesoporous materials, self-powered electrochemical anodic oxidization

References(36)

1

Lu, Q. Y.; Gao, F.; Komarneni, S.; Mallouk, T. E. Ordered SBA-15 nanorod arrays inside a porous alumina membrane. J. Am. Chem. Soc. 2004, 126, 8650-8651.

2

Bagshaw, S. A.; Pinnavaia, T. J. Mesoporous alumina molecular sieves. Angew. Chem., Int. Ed. 1996, 35, 1102-1105.

3

Cabrera, S.; El Haskouri, J.; Alamo, J.; Beltrán, A.; Beltrán, D.; Mendioroz, S.; Marcos, D. M.; Amorós, P. Surfactant-assisted synthesis of mesoporous alumina showing continuously adjustable pore sizes. Adv. Mater. 1999, 11, 379-381.

DOI
4

Zhang, W. Z. Rare earth stabilization of mesoporous alumina molecular sieves assembled through an N0I0 pathway. Chem. Commun. 1998, 1185-1186.

5

Masuda, H.; Fukuda, F. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995, 268, 1466-1468.

6

Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M.; Tamamura, T. Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 1997, 71, 2770-2772.

7

Montero-Moreno, J. M.; Belenguer, M.; Sarret, M.; Müller, C. M. Production of alumina templates suitable for electrodeposition of nanostructures using stepped techniques. Electrochimica Acta 2009, 54, 2529-2535.

8

Yanagishita, T.; Sasaki, M.; Nishio, K.; Masuda, H. Carbon nanotubes with a triangular cross-section, fabricated using anodic porous alumina as the template. Adv. Mater. 2004, 16, 429-432.

9

Nielsch, K.; Choi, J.; Schwim, K.; Wehrspohn, R. B.; Gösele, U. Self-ordering regimes of porous alumina: The 10 porosity rule. Nano Lett. 2002, 2, 677-680.

10

Jessensky, O.; Müller, F.; Gösele, U. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 1998, 72, 1173-1175.

11

Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat Mater. 2006, 5, 741-747.

12

Zhu, G.; Su, Y. J.; Bai, P.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Wang, Z. L. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 2014, 8, 6031-6037.

13

Wen, X. N.; Yang, W. Q.; Jing, Q. S.; Wang, Z. L. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano 2014, 8, 7405-7412.

14

Jing, Q. S.; Zhu, G.; Bai, P.; Xie, Y. N.; Chen, J.; Han, R. P. S.; Wang, Z. L. Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano 2014, 8, 3836-3842.

15

Lin, L.; Wang, S. H.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Hu, Y. F.; Wang, Z. L. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 2013, 13, 2916-2923.

16

Hu, Y. F.; Yang, J.; Jing, Q. S.; Niu, S. M.; Wu, W. Z.; Wang, Z. L. Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester. ACS Nano 2013, 7, 10424-10432.

17

Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

18

Guo, W. X.; Li, X. Y.; Chen, M. X.; Xu, L.; Dong, L.; Cao, X.; Tang, W.; Zhu, J.; Lin, C. J.; Pan, C. F. et al. Electrochemical cathodic protection powered by triboelectric nanogenerator. Adv. Funct. Mater. 2014, 24, 6691-6700.

19

Tang, W.; Han, Y.; Han, C. B.; Gao, C. Z.; Cao, X.; Wang, Z. L. Self-powered water splitting using flowing kinetic energy. Adv. Mater. 2015, 27, 272-276.

20

Chen, S. W.; Gao, C. Z.; Tang, W.; Zhu, H. R.; Han, Y.; Jiang, Q. W.; Li, T.; Cao, X.; Wang, Z. L. Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 2015, 14, 217-225.

21

Zhu, H. R.; Tang, W.; Gao, C. Z.; Han, Y.; Li, T.; Cao, X.; Wang, Z. L. Self-powered metal surface anti-corrosion protection using energy harvested from rain drops and wind. Nano Energy 2015, 14, 193-200.

22

Fan, F. R.; Luo, J. J.; Tang, W.; Li, C. Y.; Zhang, C. P.; Tian, Z. Q.; Wang, Z. L. Highly transparent and flexible triboelectric nanogenerators: Performance improvements and fundamental mechanisms. J. Mater. Chem. A 2014, 2, 13219-13225.

23

Chu, S. Z.; Wada, K.; Inoue, S.; Isogai, M.; Yasumori, A. Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization. Adv. Mater. 2005, 17, 2115-2119.

24

Schwirn, K.; Lee, W.; Hillebrand, R.; Steinhart, M.; Nielsch, K.; Gösele, U. Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. ACS Nano 2008, 2, 302-310.

25

Zhao, S.; Chan, K.; Yelon, A.; Veres, T. Novel structure of AAO film fabricated by constant current anodization. Adv. Mater. 2007, 19, 3004-3007.

26

Liu, J.; Liu, S.; Zhou, H. H.; Xie, C. J.; Huang, Z. Y.; Fu, C. P.; Kuang, Y. F. Preparation of self-ordered nanoporous anodic aluminum oxide membranes by combination of hard anodization and mild anodization. Thin Solid Films 2014, 552, 75-81.

27

Yang, W. Q.; Chen, J.; Zhu, G.; Yang, J.; Bai, P.; Su, Y. J.; Jing, Q. S.; Cao, X.; Wang, Z. L. Harvesting energy from the natural vibration of human walking. ACS Nano 2013, 7, 11317-11324.

28

Li, D. D.; Zhao, L.; Jiang, C. H.; Lu, J. G. Formation of anodic aluminum oxide with serrated nanochannels. Nano Lett. 2010, 10, 2766-2771.

29

Chung, C. K.; Zhou, R. X.; Liu, T. Y.; Chang, W. T. Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature. Nanotechnology 2009, 20, 055301.

30

Chung, C. K.; Chang, W. T.; Liao, M. W.; Chang, H. C. Effect of pulse voltage and aluminum purity on the characteristics of anodic aluminum oxide using hybrid pulse anodization at room temperature. Thin Solid Films 2011, 519, 4754-4758.

31

Xu, Y.; Thompson, G. E.; Wood, G. C. Mechanism of anodic film growth on aluminum. Trans. Inst. Met. Finish. 1985, 63, 98-103.

32

O'Sullivan, J. P.; Wood, G. C. The morphology and mechanism of formation of porous anodic films on aluminium. Proc. Roy. Soc. Lond. A. 1970, 317, 511-543.

33

Ono, S.; Saito, M.; Asoh, H. Self-ordering of anodic porous alumina induced by local current concentration: Burning. Electrochem. Solid State Lett. 2004, 7, B21-B24.

34

Ono, S.; Saito, M.; Ishiguro, M.; Asoh, H. Controlling factor of self-ordering of anodic porous alumina. J. Electrochem. Soc. 2004, 151, B473-B478.

35

Nandi, M.; Mondal, P.; Islam, M.; Bhaumik, A. Highly efficient hydroformylation of 1-hexene over an ortho -metallated rhodium (I) complex anchored on a 2D-hexagonal mesoporous material. Eur. J. Inorg. Chem. 2011, 2011, 221-227.

36

Dutta, A.; Mondal, J.; Patra, A. K.; Bhaumik, A. Synthesis and temperature-induced morphological control in a hybrid porous iron-phosphonate nanomaterial and its excellent catalytic activity in the synthesis of benzimidazoles. Chem. -Eur. J. 2012, 18, 13372-13378.

Video
12274_2015_860_MOESM2_ESM.avi
File
12274_2015_860_MOESM1_ESM.pdf (607.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 May 2015
Revised: 23 June 2015
Accepted: 12 July 2015
Published: 17 September 2015
Issue date: November 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

We thank the financial support from the National Natural Science Foundation of China (NSFC) (Nos. 21173017, 51272011, and 21275102), the Program for New Century Excellent Talents in University (No. NCET-12-0610), the Science and Technology Research Projects from Education Ministry (No. 213002A), National "Twelfth Five-Year" Plan for Science & Technology Support (No. 2013BAK12B06), the "thousands talents" program for pioneer researcher and his innovation team, China, National Natural Science Foundation of China (Nos. 51432005 and Y4YR011001), Beijing Municipal Commission of Science and Technology (Nos. Z131100006013004 and Z131100006013005).

Return