Journal Home > Volume 8 , Issue 11

Combination therapy is a promising cancer treatment strategy that is usually based on the utilization of complicated nanostructures with multiple components functioning as photo-thermal energy transducers, photo-sensitizers, or dose intensifiers for photothermal therapy (PTT), photodynamic therapy (PDT), or radiation therapy (RT). In this study, ultrathin tungsten oxide nanowires (W18O49) were synthesized using a solvothermal approach and examined as a multifunctional theranostic nanoplatform. In vitro and in vivo analyses demonstrated that these nanowires could induce extensive heat- and singlet oxygen-mediated damage to cancer cells under 980 nm near infrared (NIR)-laser excitation. They were also shown to function as radiation dose intensifying agents that enhance irradiative energy deposition locally and selectively during radiation therapy. Compared to NIR-induced PTT/PDT and RT alone, W18O49-based synergistic tri-modal therapy eradicated xenograft tumors and no recurrence was observed within a 9-month follow up. Moreover, the strong X-ray attenuation ability of the tungsten element (Z = 74, 4.438 cm2·g-1, 100 KeV) qualified these nanowires as excellent contrast agents in X-ray-based imaging, such as diagnostic computed tomography (CT) and cone-beam CT for image-guided radiation therapy. Toxicity studies demonstrated minimal adverse effects on the hematologic system and major organs of mice within one month. In conclusion, these nanowires have shown significant potential for cancer therapy with inherent image guidance and synergistic effects from phototherapy and radiation therapy, which warrants further investigation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single W18O49 nanowires: A multifunctional nanoplatform for computed tomography imaging and photothermal/photodynamic/radiation synergistic cancer therapy

Show Author's information Jianjian Qiu1,§Qingfeng Xiao2,§Xiangpeng Zheng1( )Libo Zhang1Huaiyong Xing2Dalong Ni2Yanyan Liu2Shengjian Zhang3Qingguo Ren4Yanqing Hua4Kuaile Zhao5Wenbo Bu2( )
Department of Radiation OncologyFudan University Huadong HospitalShanghai200040China
State Key Laboratory of High performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
Department of RadiologyShanghai Cancer HospitalFudan UniversityShanghai200032China
Department of RadiologyFudan University Huadong HospitalShanghai200032China
Department of Radiation OncologyShanghai Cancer HospitalFudan UniversityShanghai200032China

§ These authors contributed equally to this work.

Abstract

Combination therapy is a promising cancer treatment strategy that is usually based on the utilization of complicated nanostructures with multiple components functioning as photo-thermal energy transducers, photo-sensitizers, or dose intensifiers for photothermal therapy (PTT), photodynamic therapy (PDT), or radiation therapy (RT). In this study, ultrathin tungsten oxide nanowires (W18O49) were synthesized using a solvothermal approach and examined as a multifunctional theranostic nanoplatform. In vitro and in vivo analyses demonstrated that these nanowires could induce extensive heat- and singlet oxygen-mediated damage to cancer cells under 980 nm near infrared (NIR)-laser excitation. They were also shown to function as radiation dose intensifying agents that enhance irradiative energy deposition locally and selectively during radiation therapy. Compared to NIR-induced PTT/PDT and RT alone, W18O49-based synergistic tri-modal therapy eradicated xenograft tumors and no recurrence was observed within a 9-month follow up. Moreover, the strong X-ray attenuation ability of the tungsten element (Z = 74, 4.438 cm2·g-1, 100 KeV) qualified these nanowires as excellent contrast agents in X-ray-based imaging, such as diagnostic computed tomography (CT) and cone-beam CT for image-guided radiation therapy. Toxicity studies demonstrated minimal adverse effects on the hematologic system and major organs of mice within one month. In conclusion, these nanowires have shown significant potential for cancer therapy with inherent image guidance and synergistic effects from phototherapy and radiation therapy, which warrants further investigation.

Keywords: photodynamic therapy, photothermal therapy, synergistic therapy, radiation therapy, radiosensitization, image guidance

References(49)

1

Hauck, T. S.; Jennings, T. L.; Yatsenko, T.; Kumaradas, J. C.; Chan, W. C. W. Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv. Mater. 2008, 20, 3832-3838.

2

Liu, H. Y.; Liu, T. L.; Wu, X. L.; Li, L. L.; Tan, L. F.; Chen, D.; Tang, F. Q. Targeting gold nanoshells on silica nanorattles: A drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light. Adv. Mater. 2012, 24, 755-761.

3

Liu, H. Y.; Chen, D.; Li, L. L.; Liu, T. L.; Tan, L. F.; Wu, X. L.; Tang, F. Q. Multifunctional gold nanoshells on silica nanorattles: A platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem., Int. Ed. 2011, 50, 891-895.

4

Fang, W. J.; Tang, S. H.; Liu, P. X.; Fang, X. L.; Gong, J. W.; Zheng, N. F. Pd nanosheet-covered hollow mesoporous silica nanoparticles as a platform for the chemo-photothermal treatment of cancer cells. Small 2012, 8, 3816-3822.

5

Peng, C. L.; Shih, Y. H.; Lee, P. C.; Hsieh, T. M.; Luo, T. Y.; Shieh, M. J. Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. ACS Nano 2011, 5, 5594-5607.

6

Chen, Z. W.; Li, Z. H.; Wang, J. S.; Ju, E. G.; Zhou, L.; Ren, J. S.; Qu, X. G. A multi-synergistic platform for sequential irradiation-activated high-performance apoptotic cancer therapy. Adv. Funct. Mater. 2014, 24, 522-529.

7

Hayashi, K.; Nakamura, M.; Miki, H.; Ozaki, S.; Abe, M.; Matsumoto, T.; Kori, T.; Ishimura, K. Photostable iodinated silica/porphyrin hybrid nanoparticles with heavy-atom effect for wide-field photodynamic/photothermal therapy using single light source. Adv. Funct. Mater. 2014, 24, 503-513.

8

Kuo, W. S.; Chang, C. N.; Chang, Y. T.; Yang, M. H.; Chien, Y. H.; Chen, S. J.; Yeh, C. S. Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging. Angew. Chem., Int. Ed. 2010, 49, 2711-2715.

9

Wang, Y. H.; Wang, H. G.; Liu, D. P.; Song, S. Y.; Wang, X.; Zhang, H. J. Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials 2013, 34, 7715-7724.

10

Song, X. J.; Chen, Q.; Liu, Z. Recent advances in the development of organic photothermal nano-agents. Nano Res. 2015, 8, 340-354.

11

Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325-337.

12

Wang, N. N.; Zhao, Z. L.; Lv, Y. F.; Fan, H. H.; Bai, H. R.; Meng, H. M.; Long, Y. Q.; Fu, T.; Zhang, X. B.; Tan, W. H. Gold nanorod-photosensitizer conjugate with extracellular pH-driven tumor targeting ability for photothermal/ photodynamic therapy. Nano Res. 2014, 7, 1291-1301.

13

Gerweck, L. E.; Gillette, E. L.; Dewey, W. C. Effect of heat and radiation on synchronous Chinese hamster cells: Killing and repair. Radiat. Res. 1975, 64, 611-623.

14

Overgaard, J.; Bichel, P. The influence of hypoxia and acidity on the hyperthermic response of malignant cells in vitro. Radiology 1977, 123, 511-514.

15

Horsman, M. R.; Overgaard, J. Hyperthermia: A potent enhancer of radiotherapy. Clin. Oncol. 2007, 19, 418-426.

16

Ben-Hur, E.; Elkind, M. M.; Bronk, B. V. Thermally enhanced radioresponse of cultured Chinese hamster cells: Inhibition of repair of sublethal damage and enhancement of lethal damage. Radiat. Res. 1974, 58, 38-51.

17

Xiao, Q. F.; Zheng, X. P.; Bu, W. B.; Ge, W. Q.; Zhang, S. J.; Chen, F.; Xing, H. Y.; Ren, Q. G.; Fan, W. P.; Zhao, K. L. et al. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J. Am. Chem. Soc. 2013, 135, 13041-13048.

18

Chen, Z. G.; Wang, Q.; Wang, H. L.; Zhang, L. S.; Song, G. S.; Song, L. L.; Hu, J. Q.; Wang, H. Z.; Liu, J. S.; Zhu, M. F. et al. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv. Mater. 2013, 25, 2095-2100.

19

Kalluru, P.; Vankayala, R.; Chiang, C. S.; Hwang, K. C. Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by PEGylated W18O49 nanowires. Angew. Chem., Int. Ed. 2013, 52, 12332-12336.

20

Gao, L.; Fei, J. B.; Zhao, J.; Li, H.; Cui, Y.; Li, J. B. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano 2012, 6, 8030-8040.

21

Tian, B.; Wang, C.; Zhang, S.; Feng, L. Z.; Liu, Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 2011, 5, 7000-7009.

22

Orenstein, A.; Kostenich, G.; Kopolovic, Y.; Babushkina, T.; Malik, Z. Enhancement of ALA-PDT damage by IR-induced hyperthermia on a colon carcinoma model. Photochem. Photobiol. 1999, 69, 703-707.

23

Yanase, S.; Nomura, J.; Matsumura, Y.; Kato, H.; Tagawa, T. Hyperthermia Enhances the antitumor effect of photodynamic therapy with ALA hexyl ester in a squamous cell carcinoma tumor model. Photodiagn. Photodyn. Ther. 2012, 9, 369-375.

24

Henderson, B. W.; Waldow, S. M.; Potter, W. R.; Dougherty, T. J. Interaction of photodynamic therapy and hyperthermia: Tumor response and cell survival studies after treatment of mice in vivo. Cancer Res. 1985, 45, 6071-6077.

25

Waldow, S. M.; Henderson, B. W.; Dougherty, T. J. Potentiation of photodynamic therapy by heat: Effect of sequence and time interval between treatments in vivo. Lasers Surg. Med. 1985, 5, 83-94.

26

Christensen, T.; Wahl, A.; Smedshammer, L. Effects of haematoporphyrin derivative and light in combination with hyperthermia on cells in culture. Br. J. Cancer 1984, 50, 85-89.

27

Christensen, T.; Smedshammer, L.; Wahl, A.; Moan, J. Photodynamic effects and hyperthermia in vitro. In Advances in Experimental Medicine and Biology: Methods in Porphyrin Photosensitization; Springer-Verlag: New York, USA, 1985; vol. 193, pp 69-78.

28

Alvarez-Lorenzo, C.; Bromberg, L.; Concheiro, A. Light-sensitive intelligent drug delivery systems. Photochem. Photobiol. 2009, 85, 848-860.

29

Kobayashi, K.; Usami, N.; Porcel, E.; Lacombe, S.; Le Sech, C. Enhancement of radiation effect by heavy elements. Mutat. Res. 2010, 704, 123-131.

30

Prezado, Y.; Fois, G.; Le Duc, G.; Bravin, A. Gadolinium dose enhancement studies in microbeam radiation therapy. Med. Phys. 2009, 36, 3568-3574.

31

Jain, S.; Hirst, D. G.; O'Sullivan, J. M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol. 2012, 85, 101-113.

32

Chithrani, D. B.; Jelveh, S.; Jalali, F.; van Prooijen, M.; Allen, C.; Bristow, R. G.; Hill, R. P.; Jaffray, D. A. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat. Res. 2010, 173, 719-728.

33

Jain, S.; Coulter, J. A.; Hounsell, A. R.; Butterworth, K. T.; McMahon, S. J.; Hyland, W. B.; Muir, M. F.; Dickson, G. R.; Prise, K. M.; Currell, F. J. et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 531-539.

34

Chang, M. Y.; Shiau, A. L.; Chen, Y. H.; Chang, C. J.; Chen, H. H.; Wu, C. L. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci. 2008, 99, 1479-1484.

35

Le Duc, G.; Miladi, I.; Alric, C.; Mowat, P.; Bräuer-Krisch, E.; Bouchet, A.; Khalil, E.; Billotey, C.; Janier, M.; Lux, F. et al. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano 2011, 5, 9566-9574.

36

Ai, K. L.; Liu, Y. L.; Liu, J. H.; Yuan, Q. H.; He, Y. Y.; Lu, L. H. Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv. Mater. 2011, 23, 4886-4891.

37

Mendoza-Agüero, N.; Agarwal, V. Optical and structural characterization of tungsten oxide electrodeposited on nanostructured porous silicon: Effect of annealing atmosphere and temperature. J. Alloys Comp. 2013, 581, 596-601.

38

Chen, F.; Zhang, S. J.; Bu, W. B.; Chen, Y.; Xiao, Q. F.; Liu, J. N.; Xing, H. Y.; Zhou, L. P.; Peng, W. J.; Shi, J. L. A uniform sub-50 nm-sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser. Chemistry 2012, 18, 7082-7090.

39

Fong, P. M.; Keil, D. C.; Does, M. D.; Gore, J. C. Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys. Med. Biol. 2001, 46, 3105-3113.

40

Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886-1893.

41

Zhou, Z. G.; Kong, B.; Yu, C.; Shi, X. Y.; Wang, M. W.; Liu, W.; Sun, Y. N.; Zhang, Y. J.; Yang, H.; Yang, S. P. Tungsten oxide nanorods: An efficient nanoplatform for tumor CT imaging and photothermal therapy. Sci. Rep. 2014, 4, 3653.

42

Liu, J. H.; Han, J. G.; Kang, Z. C.; Golamaully, R.; Xu, N. N.; Li, H. P.; Han, X. L. In vivo near-infrared photothermal therapy and computed tomography imaging of cancer cells using novel tungsten-based theranostic probe. Nanoscale 2014, 6, 5770-5776.

43

Huo, D.; He, J.; Li, H.; Huang, A. J.; Zhao, H. Y.; Ding, Y.; Zhou, Z. Y.; Hu, Y. X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles. Biomaterials 2014, 35, 9155-9166.

44

Song, G. S.; Wang, Q.; Wang, Y.; Lv, G.; Li, C.; Zou, R. J.; Chen, Z. G.; Qin, Z. Y.; Huo, K. K.; Hu, R. G. et al. A low-toxic multifunctional nanoplatform based on Cu9S5@MSiO2 core-shell nanocomposites: Combining photothermal- and chemotherapies with infrared thermal imaging for cancer treatment. Adv. Funct. Mater. 2013, 23, 4281-4292.

45

Yavuz, M. S.; Cheng, Y. Y.; Chen, J. Y.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J. W.; Kim, C.; Song, K. H.; Schwartz, A. G. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8, 935-939.

46

Bardhan, R.; Chen, W. X.; Perez-Torres, C.; Bartels, M.; Huschka, R. M.; Zhao, L. L.; Morosan, E.; Pautler, R. G.; Joshi, A.; Halas, N. J. Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv. Funct. Mater. 2009, 19, 3901-3909.

47

Xing, H. Y.; Zheng, X. P.; Ren, Q. G.; Bu, W. B.; Ge, W. Q.; Xiao, Q. F.; Zhang, S. J.; Wei, C. Y.; Qu, H. Y.; Wang, Z. et al. Computed tomography imaging-guided radiotherapy by targeting upconversion nanocubes with significant imaging and radiosensitization enhancements. Sci. Rep. 2013, 3, 1751.

48

Chen, Y. S.; Frey, W.; Kim, S.; Homan, K.; Kruizinga, P.; Sokolov, K.; Emelianov, S. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt. Express 2010, 18, 8867-8878.

49

Ku, G.; Zhou, M.; Song, S. L.; Huang, Q.; Hazle, J.; Li, C. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 2012, 6, 7489-7496.

File
12274_2015_858_MOESM1_ESM.pdf (4.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 March 2015
Revised: 04 July 2015
Accepted: 09 July 2015
Published: 16 September 2015
Issue date: November 2015

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2015

Acknowledgements

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (Nos. 51372260, 51132009, and 21172043), the Shanghai Rising-Star Program (No. 12QH1402500), the Science and Technology Commission of Shanghai (No. 11nm0505000 and 124119a0400), the Shanghai Municipal Commission of Health (No. 20134360), the Development Foundation for Talents of Shanghai (No. 2012035).

Return