Journal Home > Volume 8 , Issue 11

Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exhibited a superior photoelectrochemical performance with a maximum photoconversion efficiency of 0.51%, which is 795 and 64 times higher than that of a bare Si wafer and nanowires, respectively. The large enhancement was attributed to the effective electron–hole separation and fast excited carrier transport within the multijunctions resulting from their favorable energy band alignments with water redox potentials, and to the enlarged contact area for facilitating the electron transfer at the multijunction/electrolyte interface.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting

Show Author's information Qiong Liu1Fangli Wu1Fengren Cao1Lei Chen2Xinjian Xie2Weichao Wang2Wei Tian1( )Liang Li1( )
College of PhysicsOptoelectronics and EnergyJiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhou215006China
Department of ElectronicsTianjin Key Laboratory of Photo-Electronic Thin Film Device and TechnologyNankai UniversityTianjin370001China

Abstract

Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exhibited a superior photoelectrochemical performance with a maximum photoconversion efficiency of 0.51%, which is 795 and 64 times higher than that of a bare Si wafer and nanowires, respectively. The large enhancement was attributed to the effective electron–hole separation and fast excited carrier transport within the multijunctions resulting from their favorable energy band alignments with water redox potentials, and to the enlarged contact area for facilitating the electron transfer at the multijunction/electrolyte interface.

Keywords: atomic layer deposition, nanosheets, water splitting, photoelectrochemical cells, multijunction

References(39)

1

Cheng, C. W.; Fan, H. J. Branched nanowires: Synthesis and energy applications. Nano Today 2012, 7, 327-343.

2

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503-6570.

3

Liu, D.; Li, L. L.; Gao, Y.; Wang, C. M.; Jiang, J.; Xiong, Y. J. The nature of photocatalytic "water splitting" on silicon nanowires. Angew. Chem., Int. Ed. 2015, 54, 2980-2985.

4

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.

5

Liu, J.; Wang, H. Q.; Chen Z. P.; Moehwald, H.; Fiechter, S.; van der Krol, R.; Wen, L. P.; Jiang, L.; Antonietti, M. Microcontact- printing-assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application. Adv. Mater. 2015, 27, 712-718.

6

Xie, M. Z.; Fu, X. D.; Jing, L. Q.; Luan, P.; Feng, Y. J.; Fu, H. G. Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv. Energy Mater. 2014, 4, DOI: 10.1002/aenm.201300995.

7

Kim, J. Y.; Jang, J. W.; Youn, D. H.; Magesh, G.; Lee, J. S. A stable and efficient hematite photoanode in a neutral electrolyte for solar water splitting: Towards stability engineering. Adv. Energy Mater. 2014, 4, DOI: 10.1002/ aenm.201400476.

8

Yeh, T. F.; Teng, C. Y.; Chen, S. J.; Teng, H. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 2014, 26, 3297-3303.

9

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970-974.

10

Zhang, X.; Liu, Y.; Kang, Z. H. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high- performance photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 4480-4489.

11

Noh, S. Y.; Sun, K.; Choi, C.; Niu, M. T.; Yang, M. C.; Xu, K.; Jin, S. B.; Wang, D. L. Branched TiO2/Si nanostructures for enhanced photoelectrochemical water splitting. Nano Energy 2013, 2, 351-360.

12

Yu, R.; Lin, Q. F.; Leung, S. F.; Fan, Z. Y. Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy 2012, 1, 57-72.

13

Sun, K.; Jing, Y.; Li, C.; Zhang, X. F.; Aguinaldo, R.; Kargar, A.; Madsen, K.; Banu, K.; Zhou, Y. C.; Bando, Y. et al. 3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation. Nanoscale 2012, 4, 1515-1521.

14

Hwang, Y. J.; Boukai, A.; Yang, P. D. High density n-Si/n- TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 2009, 9, 410-415.

15

Shi, J.; Hara, Y.; Sun, C. L.; Anderson, M. A.; Wang, X. D. Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. Nano Lett. 2011, 11, 3413-3419.

16

Hwang, Y. J.; Wu, C. H.; Hahn, C.; Jeong, H. E; Yang, P. D. Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties. Nano Lett. 2012, 12, 1678-1682.

17

Wang, X.; Peng, K. Q.; Hu, Y.; Zhang, F. Q.; Hu, B.; Li, L.; Wang, M.; Meng, X. M.; Lee, S. T. Silicon/hematite core/ shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation. Nano Lett. 2014, 14, 18-23.

18

Sheng, W. J.; Sun, B.; Shi, T. L.; Tan, X. H.; Peng, Z. C.; Liao, G. L. Quantum dot-sensitized hierarchical micro/ nanowire architecture for photoelectrochemical water splitting. ACS Nano 2014, 8, 7163-7169.

19

Peng, S. J.; Zhu, P. N.; Mhaisalkar, S. G.; Ramakrishna, S. Self-supporting three-dimensional ZnIn2S4/PVDF-poly(MMA- co-MAA) composite mats with hierarchical nanostructures for high photocatalytic activity. J. Phys. Chem. C 2012, 116, 13849-13857.

20

Seo, W. S.; Otsuk, R.; Okuno, H.; Ohta, M.; Koumoto, K. Thermoelectric properties of sintered polycrystalline ZnIn2S4. J. Mater. Res. 1999, 14, 4176-4181.

21

Romeo, N.; Dallaturca, A.; Braglia, R.; Sberveglieri, G. Charge storage in ZnIn2S4 single crystals. Appl. Phys. Lett. 1973, 22, 21-22.

22

Peng, S. J.; Wu, Y. Z.; Zhu, P. N.; Thavasi, V.; Ramakrishna, S.; Mhaisalkar, S. G. Controlled synthesis and photoelectric application of ZnIn2S4 nanosheet/TiO2 nanoparticle composite films. J. Mater. Chem. 2011, 21, 15718-15726.

23

Shen, S. H.; Chen, X. B.; Ren, F.; Kronawitter, C. X.; Mao, S. S.; Guo, L. J. Solar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides. Nanoscale Res. Lett. 2011, 6, 290.

24

Bai, Z. M.; Yan, X. Q.; Kang, Z.; Hu, Y. P.; Zhang, X. H.; Zhang, Y. Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn2S4 nanosheets coating. Nano Energy 2015, 14, 392-400.

25

Lei, Z. B.; You, W. S.; Liu, M. Y.; Zhou, G. H.; Takata, T.; Hara, M.; Domen, K.; Li, C. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chem. Commun. 2003, 17, 2142-2143.

26

Shen, S. H.; Zhao, L.; Zhou, Z. H.; Guo, L. J. Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation. J. Phys. Chem. C 2008, 112, 16148-16155.

27

Zhou, M.; Lou, X. W.; Xie, Y. Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities. Nano Today 2013, 8, 598-618.

28

Huang, Z. P.; Geyer, N.; Werner, P.; de Boor, J.; Gösele, U. Metal-assisted chemical etching of silicon: A review. Adv. Mater. 2011, 23, 285-308.

29

Huang, Z.; Wang, C.; Chen, Z.; Meng, H.; Lv, C.; Chen, Z.; Han, R.; Zhang, C. Tungsten sulfide enhancing solar-driven hydrogen production from silicon nanowires. ACS Appl. Mater. Interfaces 2014, 6, 10408-10414.

30

Peng, K. Q.; Xu, Y.; Wu, Y.; Yan, Y. J.; Lee, S. T.; Zhu, J. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 2005, 1, 1062-1067.

31

Li, H. X.; Cheng, C. W.; Li, X. L.; Liu, J. P.; Guan, C.; Tay, Y. Y.; Fan, H. J. Composition-graded ZnxCd1-xSe@ZnO core-shell nanowire array electrodes for photoelectrochemical hydrogen generation. J. Phys. Chem. C 2012, 116, 3802- 3807.

32

Li, Y. B.; Takata, T.; Cha, D.; Takanabe, K.; Minegishi, T.; Kubota, J.; Domen, K. Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv. Mater. 2013, 25, 125-131.

33

Devarapalli, R. R.; Debgupta, J.; Pillai, V. K.; Shelke, M. V. C@SiNW/TiO2 core-shell nanoarrays with sandwiched carbon passivation layer as high efficiency photoelectrode for water splitting. Sci. Rep. 2014, 4, 4897.

34

Shi, J.; Wang, X. D. Hierarchical TiO2-Si nanowire architecture with photoelectrochemical activity under visible light illumination. Energy Environ. Sci. 2012, 5, 7918-7922.

35

Yu, H. T.; Chen, S.; Fan, X. F.; Quan, X.; Zhao, H. M.; Li, X. Y.; Zhang, Y. B. A structured macroporous silicon/graphene heterojunction for efficient photoconversion. Angew. Chem., Int. Ed. 2010, 49, 5106-5109.

36

Bisquert, J. Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 2002, 106, 325-333.

37

Xu, B.; He, P. L.; Liu, H. L.; Wang, P. P.; Zhou, G.; Wang, X. A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Angew. Chem., Int. Ed. 2014, 53, 2339-2343.

38

Hahn, N. T.; Mullins, C. B. Photoelectrochemical performance of nanostructured Ti- and Sn-doped α-Fe2O3 photoanodes. Chem. Mater. 2010, 22, 6474-6482.

39

Liu, Q.; Lu, H.; Shi, Z. W.; Wu, F. L.; Guo, J.; Deng, K. M.; Li, L. 2D ZnIn2S4 nanosheet/lD TiO2 nanorod heterostructure arrays for improved photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 17200-17207.

File
12274_2015_852_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 April 2015
Revised: 25 June 2015
Accepted: 02 July 2015
Published: 17 September 2015
Issue date: November 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51422206 and 51372159), 1000 Talents Plan for Young Researchers, "Shuangchuang" Program of Jiangsu Province, a Project Supported by Jiangsu Science and Technology Committee for Distinguished Young Scholars (No. BK20140009), the National Basic Research Program of China (973 Program) (No. 2015CB358600) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). We also acknowledge Jiangsu Nata Opto- electronic Materials Co. Ltd. for providing high purity TDMAT precursor for deposition of TiO2 thin films.

Return