Journal Home > Volume 8 , Issue 11

Engineering complex nanocomposites that specifically target the hepatitis B virus (HBV) and overcome the limitations of current therapies such as limited efficacy and serious side effects is very challenging. Here, for the first time, the antiviral effect of engineered plasmonic gold and layered double hydroxide self-assemblies (AuNPs/LDHs) is demonstrated, using HBV as a model virus and hepatoma-derived HepG2.2.215 cells for viral replication, assembly, and secretion of infectious virions and subviral particles. AuNPs/LDHs were obtained by a simple, cost-effective procedure in which small AuNPs (~3.5 nm) were directly obtained and organized on the surface of larger LDH nanoparticles (~150 nm) by exploiting the capability of MgLDH, ZnLDH, and MgFeLDH to manifest their "structural memory" in the aqueous solution of Au(O2CCH3)3. The self-assembly approach of AuNPs and LDHs was assessed by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD), and UV—Vis analysis (UV–Vis). All AuNPs/LDHs tested reduced the amount of viral and subviral particles released from treated cells by up to 80% and exhibited good cytocompatibility. AuNPs/MgFeLDH showed the highest antiviral HBV response with more than 90% inhibition of HBV secretion for the whole concentration range. Preliminary studies on the mechanism of HBV inhibition reveals that in the presence of AuNPs/LDHs, HBV particles are sequestered within the treated cells. The antiviral and low cytotoxic plasmonic properties of these Au/LDH nanocomposites indicate that they hold significant potential to be tailored as novel efficient therapeutics for the treatment of hepatitis B.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-assemblies of plasmonic gold/layered double hydroxides with highly efficient antiviral effect against the hepatitis B virus

Show Author's information Gabriela Carja1( )Elena Florentina Grosu1Catalina Petrarean2Norica Nichita2
Department of Chemical EngineeringFaculty of Chemical Engineering and Environmental ProtectionTechnical University "Gh. Asachi" of IasiBd. Mangeron No. 71Iasi700554Romania
Department of Viral GlycoproteinsInstitute of Biochemistry of the Romanian AcademySplaiul Independentei 296Bucharest060031Romania

Abstract

Engineering complex nanocomposites that specifically target the hepatitis B virus (HBV) and overcome the limitations of current therapies such as limited efficacy and serious side effects is very challenging. Here, for the first time, the antiviral effect of engineered plasmonic gold and layered double hydroxide self-assemblies (AuNPs/LDHs) is demonstrated, using HBV as a model virus and hepatoma-derived HepG2.2.215 cells for viral replication, assembly, and secretion of infectious virions and subviral particles. AuNPs/LDHs were obtained by a simple, cost-effective procedure in which small AuNPs (~3.5 nm) were directly obtained and organized on the surface of larger LDH nanoparticles (~150 nm) by exploiting the capability of MgLDH, ZnLDH, and MgFeLDH to manifest their "structural memory" in the aqueous solution of Au(O2CCH3)3. The self-assembly approach of AuNPs and LDHs was assessed by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD), and UV—Vis analysis (UV–Vis). All AuNPs/LDHs tested reduced the amount of viral and subviral particles released from treated cells by up to 80% and exhibited good cytocompatibility. AuNPs/MgFeLDH showed the highest antiviral HBV response with more than 90% inhibition of HBV secretion for the whole concentration range. Preliminary studies on the mechanism of HBV inhibition reveals that in the presence of AuNPs/LDHs, HBV particles are sequestered within the treated cells. The antiviral and low cytotoxic plasmonic properties of these Au/LDH nanocomposites indicate that they hold significant potential to be tailored as novel efficient therapeutics for the treatment of hepatitis B.

Keywords: layered double hydroxides, layered double hydroxide (LDH), cytotoxicity, plasmonic gold, antiviral effect, HBV, hepatitis

References(47)

1

Parkin, D. M. Global cancer statistics in the year 2000. Lancet Oncol. 2001, 2, 533-543.

2

Huang, T. J.; Chuang, H.; Liang, Y. C.; Lin, H. H.; Horng, J. C.; Kuo, Y. C; Chen, C. W.; Tsai, F. Y.; Yen, S. C.; Chou, S. C. et al. Design, synthesis, and bioevaluation of paeonol derivatives as potential anti-HBV agents. Eur. J. Med. Chem. 2015, 90, 428-435.

3

Yu, W. Q.; Goddard, C.; Clearfield, E.; Mills, C.; Xiao, T.; Guo, H. T.; Morrey, J. D.; Motter, N. E.; Zhao, K.; Block, T. M. et al. Design, synthesis, and biological evaluation of triazolo-pyrimidine derivatives as novel inhibitors of hepatitis B virus surface antigen (HBsAg) secretion. J. Med. Chem. 2011, 54, 5660-5670.

4

Block, T. M.; Gish, R.; Guo, H. T.; Mehta, A.; Cuconati, A.; Thomas London, W.; Guo, J. T. Chronic hepatitis B: What should be the goal for new therapies? Antiviral Res. 2013, 98, 27-34.

5

Austin, L. A.; Mackey, M. A.; Dreaden, E. C.; El-Sayed, M. A. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch. Toxicol. 2014, 88, 1391-1417.

6

Huang, T. J.; Chou, B. H.; Lin, C. W.; Weng, J. H.; Chou, C. H.; Yang, L. M.; Lin, S. J. Synthesis and antiviral effects of isosteviol-derived analogues against the hepatitis B virus. Phytochemistry 2014, 99, 107-114.

7

Blecher, K.; Nasir, A.; Friedman, A. The growing role of nanotechnology in combating infectious disease. Virulence 2011, 2, 395-401.

8

Yang, F.; Jin, C.; Subedi, S.; Lee, C. L.; Wang, Q.; Jiang, Y. J.; Li, J.; Di, Y.; Fu, D. L. Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment. Cancer Treat. Rev. 2012, 38, 566-579.

9

Dreaden, E. C.; El-Sayed, M. A. Detecting and destroying cancer cells in more than one way with noble metals and different confinement properties on the nanoscale. Acc. Chem. Res. 2012, 45, 1854-1865.

10

Kennedy, L. C.; Bickford, L. R.; Lewinski, N. A.; Coughlin, A. J.; Hu, Y.; Day, E. S.; West, J. L.; Drezek, R. A. A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies. Small 2011, 7, 169-183.

11

Luo, Y. L.; Shiao, Y. S.; Huang, Y. F. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ASC Nano 2011, 5, 7796-7804.

12

Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small 2008, 4, 26-49.

13

Kostarelos, K.; Lacerda, L.; Pastorin, G.; Wu, W.; Kieckowski, S.; Luangsivilay, J.; Godefroy, S.; Pantarotto, D.; Briand, J. P.; Muller, S. et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2007, 2, 108-113.

14

Thomas, M.; Klibanov, A. M. Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. USA. 2003, 100, 9138-9143.

15

Mackey, M. A.; Ali, M. R. K.; Austin, L. A.; Near, R. D.; El-Sayed, M. A. The most effective gold nanorod size for plasmonic photothermal therapy: Theory and in vitro experiments. J. Phys. Chem. B 2014, 118, 1319-1326.

16

Mahmoud, M. A.; El-Sayed, M. A. Different plasmon sensing behavior of silver and gold nanorods. J. Phys. Chem. Lett. 2013, 4, 1541-1545.

17

Liu, J. B.; Yu, M. X.; Zhou, C.; Zheng, J. Renal clearable inorganic nanoparticles: A new frontier of bionanotechnology. Mater. Today 2013, 16, 477-486.

18

Goh, D.; Gong, T. X.; Dinish, U. S.; Maiti, K. K.; Fu, C. Y.; Yong, K. T.; Olivo, M. Pluronic triblock copolymer encapsulated gold nanorods as biocompatible localized plasmon resonance-enhanced scattering probes for dark-field imaging of cancer cells. Plasmonics 2012, 7, 595-601.

19

Zhang, X. D.; Wu, H. Y.; Wu, D.; Wang, Y. Y.; Chang, J. H.; Zhai, Z. B.; Meng, A. M.; Liu, P. X.; Zhang, L. A.; Fan, F. Y. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomedicine. 2010, 5, 771-781.

20

Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E. Toward greener nanosynthesis. Chem. Rev. 2007, 107, 2228-2269.

21

Hou, W.; Cronin, S. B. A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612-1619.

22

Kawamura, S.; Puscasu, M. C.; Yoshida, Y.; Izumi, Y.; Carja, G. Tailoring assemblies of plasmonic silver/gold and zinc-gallium layered double hydroxides for photocatalytic conversion of carbon dioxide using UV-visible light. Appl. Catal. A: Gen., in press, DOI: 10.1016/j.apcata.2014.12.042.

23

Carja, G.; Birsanu, M.; Okada, K.; Garcia, H. Composite plasmonic gold/layered double hydroxides and derived mixed oxides as novel photocatalysts for hydrogen generation under solar irradiation. J. Mater. Chem. A 2013, 1, 9092-9098.

24

Seftel, E. M.; Puscasu, M. C.; Mertens, M.; Cool, P.; Carja, G. Fabrication of CeO2/LDHs self-assemblies with enhanced photocatalytic performance: A case study on ZnSn-LDH matrix. Appl. Catal. B: Environ. 2015, 164, 251-260.

25

Valente, J. S.; Lima, E.; Toledo-Antonio, J. A.; Cortes- Jacome, M. A.; Lartundo-Rojas, L.; Montiel, R.; Prince, J. Comprehending the thermal decomposition and reconstruction process of sol-gel MgAl layered double hydroxides. J. Phys. Chem. C 2010, 114, 2089-2099.

26

Prince, J.; Tzompantzi, F.; Mendoza-Damián, G.; Hernández- Beltránc, F.; Valente, J. S. Photocatalytic degradation of phenol by semiconducting mixed oxides derived from Zn(Ga)Al layered double hydroxides. Appl. Catal. B: Environ. 2015, 163, 352-360.

27

Carja, G.; Dartu, L.; Okada, K.; Fortunato, E. Nanoparticles of copper oxide on layered double hydroxides and the derived solid solutions as wide spectrum active nano-photocatalysts. Chem. Eng. J. 2013, 222, 60-66.

28

Ariga, K.; Ji, Q. M.; McShane, M. J.; Lvov, Y. M.; Vinu, A.; Hill, J. P. Inorganic nanoarchitectonics for biological applications. Chem. Mater. 2012, 24, 728-737.

29

Ladewig, K.; Niebert, M.; Xu, Z. P.; Gray, P. P.; Lu, G. Q. M. Efficient siRNA delivery to mammalian cells using layered double hydroxide nanoparticles. Biomaterials 2010, 31, 1821-1829.

30

Oh, J. M.; Choi, S. J.; Lee, G. E.; Kim, J. E.; Choy, J. H. Inorganic metal hydroxide nanoparticles for targeted cellular uptake through clathrin-mediated endocytosis. Chem. Asian J. 2009, 4, 67-73.

31

Reichle, W. T.; Kang, S. Y.; Everhardt, D. S. The nature of the thermal decomposition of a catalytically active anionic clay mineral. J. Catal. 1986, 101, 352-359.

32

Lazar, C.; Durantel, D.; Macovei, A.; Zitzmann, N.; Zoulim, F.; Dwek, R. A.; Branza-Nichita, N. Treatment of hepatitis B virus-infected cells with α-glucosidase inhibitors results in production of virions with altered molecular composition and infectivity. Antiviral Res. 2007, 76, 30-37.

33

Rives, V.; del Arco, M.; Martin, C. Intercalation of drugs in layered double hydroxides and their controlled release: A review. Appl. Clay Sci. 2014, 88-89, 239-269.

34

Rives, V. Layered Double Hydroxides: Present and Future; Nova Science Publishers: New York, 2011.

35

Louis, C.; Pluchery, O. Gold Nanoparticles for Physics, Chemistry, Biology; Imperial College Press: London, 2012.

DOI
36

He, J. H.; Kunitake, T. Preparation and thermal stability of gold nanoparticles in silk-templated porous filaments of titania and zirconia. Chem. Mater. 2004, 16, 2656-2661.

37

Alanis, C.; Natividad, R.; Barrera-Diaz, C.; Martínez-Miranda, V.; Prince, J.; Valente, J. S. Photocatalytically enhanced Cr(VI) removal by mixed oxides derived from MeAl (Me: Mg and/ or Zn) layered double hydroxides. Appl. Catal. B: Environ. 2013, 140-141, 546-551.

38

Hall, B. D.; Zanchet, D.; Ugarte, D. Estimating nanoparticle size from diffraction measurements. J. Appl. Cryst. 2000, 33, 1335-1341.

39

Prevot, V.; Briois, V.; Cellier, J.; Forano C.; Leroux, F. An in-situ investigation of LDH-acetate prepared in polyol, under moderate thermal treatment. J. Phys. Chem. Solids 2008, 69, 1091-1094.

40

Horváth, A.; Beck, A.; Stefler, G.; Benkó, T.; Sáfrán, G.; Varga, Z.; Gubicza, J.; Guczi, L. Silica-supported Au nanoparticles decorated by CeO2: Formation, morphology, and CO oxidation activity. J. Phys. Chem. C 2011, 115, 20388-20398.

41

Kominami, H.; Tanaka, A; Hashimoto, K. Gold nanoparticles supported on cerium(IV) oxide powder for mineralization of organic acids in aqueous suspensions under irradiation of visible light of λ = 530 nm. Appl. Catal. A: Gen. 2011, 397, 121-126.

42

Corti, C.; Holliday, R. Gold: Science and Applications; CRC Press: UK, 2009.

DOI
43

Zhou, C.; Yu, J.; Qin, Y. P.; Zheng, J. Grain size effects in polycrystalline gold nanoparticles. Nanoscale 2012, 4, 4228-4233.

44

Mignani, A.; Ballarin, B.; Giorgetti, M.; Scavetta, E.; Tonelli, D.; Boanini, E.; Prevot, V.; Mousty, C.; Iadecola, A. Heterostructure of Au nanoparticles-NiAl layered double hydroxide: Electrosynthesis, characterization, and electrocatalytic properties. J. Phys Chem. C 2013, 117, 16221-16230.

45

Patient, R.; Hourioux, C.; Roingeard, P. Morphogenesis of hepatitis B virus and its subviral envelope particles. Cell. Microbiol. 2009, 11, 1561-1570.

46

Lu, L.; Sun, R. W.; Chen, R.; Hui, C. K.; Ho, C. M.; Luk, J. M.; Lau G. K. K.; Che, C. M. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. 2008, 13, 253-262.

47

Bruss, V. Hepatitis B virus morphogenesis. World J. Gastroenterol. 2007, 13, 65-73.

File
12274_2015_851_MOESM1_ESM.pdf (1,015.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 March 2015
Revised: 01 July 2015
Accepted: 02 July 2015
Published: 03 September 2015
Issue date: November 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015

Acknowledgements

The authors are grateful for the financial supports from the Romanian National Authority for Scientific Research, CNCS-UEFISCDI (No. PN-II-ID-PCE-75/2013) and the Romanian Academy.

Return