Journal Home > Volume 8 , Issue 10

Using density functional theory (DFT) calculations, we rationally designed metallic nanocatalysts with ternary transition metals for oxygen reduction reactions (ORRs) in fuel cell applications. We surrounded binary core—shell nanoparticles with a Pt skin layer. To overcome surface segregation of the core 3-d transition metal, we identified the binary alloy Cu0.76Ni0.24 as having strongly attractive atomic interactions by computationally screening 158 different alloy configurations using energy convex hull theory. The PtskinCu0.76Ni0.24 nanoparticle showed better electrochemical stability than pure Pt nanoparticles ~3 nm in size. We propose that the underlying mechanism originates from favorable compressive strain on Pt for ORR catalysis and atomic interactions among the nanoparticle shells for electrochemical stability. Our results will contribute to accurate identification and innovative design of promising nanomaterials for renewable energy systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

First-principles computational study of highly stable and active ternary PtCuNi nanocatalyst for oxygen reduction reaction

Show Author's information Seung Hyo Noh1Byungchan Han2( )Takeo Ohsaka1( )
Department of Electronic ChemistryInterdisciplinary Graduate School of Science and EngineeringTokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama4259-G1-5, 226-8502Japan
Department of Chemical and Biomolecular EngineeringYonsei University, Seoul120-749Republic of Korea

Abstract

Using density functional theory (DFT) calculations, we rationally designed metallic nanocatalysts with ternary transition metals for oxygen reduction reactions (ORRs) in fuel cell applications. We surrounded binary core—shell nanoparticles with a Pt skin layer. To overcome surface segregation of the core 3-d transition metal, we identified the binary alloy Cu0.76Ni0.24 as having strongly attractive atomic interactions by computationally screening 158 different alloy configurations using energy convex hull theory. The PtskinCu0.76Ni0.24 nanoparticle showed better electrochemical stability than pure Pt nanoparticles ~3 nm in size. We propose that the underlying mechanism originates from favorable compressive strain on Pt for ORR catalysis and atomic interactions among the nanoparticle shells for electrochemical stability. Our results will contribute to accurate identification and innovative design of promising nanomaterials for renewable energy systems.

Keywords: stability, density functional theory, durability, nanoparticle, alloy, ternary alloy

References(58)

1

Stolten, D.; Scherer, V. Transition to Renewable Energy Systems; Wiley-VCH: Weinheim, 2013.

DOI
2

Takahasi, R.; Sugiura, K.; Akiyama, K.; Nonouchi, T.; Hanai, N.; Kiyohara, Y.; Miyata, J.; Okada, O. Optimization of operating condition for CO2 facilitated transport membrane in hydrogen station. ECS Trans. 2015, 65, 175–181.

3

He, C. Z.; Desai, S.; Brown, G.; Bollepalli, S. PEM fuel cell catalysts: Cost, performance, and durability. Electrochem. Soc. Interface 2005, 14, 41–46.

4

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

5

Li, H. Y.; Wang, J. S.; Liu, M.; Wang, H.; Su, P. L.; Wu, J. S.; Li, J. A nanoporous oxide interlayer makes a better Pt catalyst on a metallic substrate: Nanoflowers on a nanotube bed. Nano Res. 2014, 7, 1007–1017.

6

Zheng, F. L.; Wong, W. -T.; Yung, K. -F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

7

Li, J. Y.; Wang, G. X.; Wang, J.; Miao, S.; Wei, M. M.; Yang, F.; Yu, L.; Bao, X. H. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Res. 2014, 7, 1519–1527.

8

Wang, D. L.; Xin, H. L. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

9

Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

10

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

11

Greeley, J.; Stephens, I.; Bondarenko, A.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

12

Chen, S.; Ferreira, P. J.; Sheng, W. C.; Yabuuchi, N.; Allard, L. F.; Shao-Horn, Y. Enhanced activity for oxygen reduction reaction on "Pt3Co" nanoparticles: Direct evidence of percolated and sandwich-segregation structures. J. Am. Chem. Soc. 2008, 130, 13818–13819.

13

He, T.; Kreidler, E.; Xiong, L.; Luo, J.; Zhong, C. J. Alloy electrocatalysts: Combinatorial discovery and nanosynthesis. J. Electrochem. Soc. 2006, 153, A1637–A1643.

14

Cui, C. H.; Gan, L.; Li, H. -H.; Yu, S. -H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885–5889.

15

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt- bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

16

Tang, L.; Han, B.; Persson, K.; Friesen, C.; He, T.; Sieradzki, K.; Ceder, G. Electrochemical stability of nanometer-scale Pt particles in acidic environments. J. Am. Chem. Soc. 2009, 132, 596–600.

17

Stamenkovic, V. R.; Mun, B. S.; Mayrhofer, K. J.; Ross, P. N.; Markovic, N. M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 2006, 128, 8813–8819.

18

van der Vliet, D. F.; Wang, C.; Li, D. G.; Paulikas, A. P.; Greeley, J.; Rankin, R. B.; Strmcnik, D.; Tripkovic, D.; Markovic, N. M.; Stamenkovic, V. R. Unique electrochemical adsorption properties of Pt‐Skin Surfaces. Angew. Chem. Int. Ed. 2012, 124, 3193–3196.

19

Han, B. C.; Van der Ven, A.; Ceder, G.; Hwang, B. -J. Surface segregation and ordering of alloy surfaces in the presence of adsorbates. Phys. Rev. B 2005, 72, 205409.

20

Kang, H. C.; Yan, H. F.; Chu, Y. S.; Lee, S. Y.; Kim, J.; Nazaretski, E.; Kin, C.; Seo, O.; Noh, D. Y.; Macrander, A. T. et al. Oxidation of PtNi nanoparticles studied by a scanning X-ray fluorescence microscope with multi-layer Laue lenses. Nanoscale 2013, 5, 7184–7187.

21

Pourbaix, M. Atlas of electrochemical equilibria in aqueous solutions; Pergamon Press: Oxford, 1974.

DOI
22

Noh, S. H.; Seo, M. H.; Seo, J. K.; Fischer, P.; Han, B. First principles computational study on the electrochemical stability of Pt–Co nanocatalysts. Nanoscale2013, 5, 8625–8633.

23

Balbuena, P.; Callejas-Tovar, R.; Hirunsit, P.; de la Hoz, J. M.; Ma, Y.; Ramírez-Caballero, G. Evolution of Pt and Pt- alloy catalytic surfaces under oxygen reduction reaction in acid medium. Top. Catal. 2012, 55, 322–335.

24

Escaño, M. C. S.; Kasai, H. First-principles study on surface structure, thickness and composition dependence of the stability of Pt-skin/Pt3Co oxygen–reduction-reaction catalysts. J. Power Sources 2014, 247, 562–571.

25

Srivastava, R.; Mani, P.; Hahn, N.; Strasser, P. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticles. Angew. Chem. Int. Ed. 2007, 119, 9146–9149.

26

Arumugam, B.; Kakade, B. A.; Tamaki, T.; Arao, M.; Imai, H.; Yamaguchi, T. Enhanced activity and durability for electroreduction of oxygen at chemically ordered intermetallic PtFeCo catalyst. RSC Adv. 2014, 4, 27510–27517.

27

Mani, P.; Srivastava, R.; Strasser, P. Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells. J. Power Sources2011, 196, 666–673.

28

Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 1999, 146, 3750–3756.

29

Neyerlin, K.; Srivastava, R.; Yu, C. F.; Strasser, P. Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR). J. Power Sources 2009, 186, 261–267.

30

Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B-Environ. 2005, 56, 9–35.

31

Escaño, M. C. S. First-principles calculations of the dissolution and coalescence properties of Pt nanoparticle ORR catalysts: The effect of nanoparticle shape. Nano Res. 2015, 8, 1689– 1697.

32

Wu, J. B.; Qi, L.; You, H. J.; Gross, A.; Li, J.; Yang, H. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 2012, 134, 11880–11883.

33

Ling, T.; Xie, L.; Zhu, J.; Yu, H. M.; Ye, H. Q.; Yu, R.; Cheng, Z. Y.; Liu, L.; Yang, G. W.; Cheng, Z. D. Icosahedral face-centered cubic Fe nanoparticles: Facile synthesis and characterization with aberration-corrected TEM. Nano Lett. 2009, 9, 1572–1576.

34

Winter, B. J.; Klots, T. D.; Parks, E. K.; Riley, S. J. Chemical identification of icosahedral structure for cobalt and nickel clusters. Z. Phys. D 1991, 19, 375–380.

35

Cao, X. R.; Fu, Q.; Luo, Y. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst. Phys. Chem. Chem. Phys. 2014, 16, 8367–8375.

36

Tsai, A. -P.; Inoue, A.; Masumoto, T. New quasicrystals in Al65Cu20M15 (M = Cr, Mn or Fe) systems prepared by rapid solidification. J. Mater. Sci. 1988, 7, 322–326.

37

Wei, G. -F.; Fang, Y. -H.; Liu, Z. -P. First principles Tafel kinetics for resolving key parameters in optimizing oxygen electrocatalytic reduction catalyst. J. Phys. Chem. C2012, 116, 12696–12705.

38

Wei, G. -F.; Liu, Z. -P. Towards active and stable oxygen reduction cathodes: A density functional theory survey on Pt2M skin alloys. Energy Environ. Sci. 2011, 4, 1268–1272.

39

Wei, G. -F.; Liu, Z. -P. Restructuring and hydrogen evolution on Pt nanoparticle. Chem. Sci. 2015, 6, 1485–1490.

40

Tsai, H. -C.; Yu, T. H.; Sha, Y.; Merinov, B. V.; Wu, P. -W.; Chen, S. -Y.; Goddard, W. A. Density functional theory study of Pt3M alloy surface segregation with adsorbed O/OH and Pt3Os as catalysts for oxygen reduction reaction. J. Phys. Chem. C 2014, 118, 26703–26712.

41

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

42

Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many- electron system. Phys. Rev. B 1996, 54, 16533–16539.

43

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

44

Methfessel, M.; Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621.

45

Toda, T.; Igarashi, H.; Watanabe, M. Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys. J. Electroanal. Chem. 1999, 460, 258–262.

46

Han, B. C.; Miranda, C.; Ceder, G. Effect of particle size and surface structure on adsorption of O and OH on platinum nanoparticles: A first-principles study. Phys. Rev. B 2008, 77, 075410.

47

Noh, S. H.; Kwak, D. H.; Seo, M. H.; Ohsaka, T.; Han, B. First principles study of oxygen reduction reaction mechanisms on N-doped graphene with a transition metal support. Electrochim. Acta 2014, 140, 225–231.

48

Hammer, B.; Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220.

49

Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71–129.

50

Dubau, L.; Durst, J.; Maillard, F.; Guétaz, L.; Chatenet, M.; André, J.; Rossinot, E. Further insights into the durability of Pt3Co/C electrocatalysts: Formation of "hollow" Pt nanoparticles induced by the Kirkendall effect. Electrochim. Acta 2011, 56, 10658–10667.

51

Haynes, W. M. CRC handbook of chemistry and physics; CRC Press: Boca Raton, FL, 2013.

DOI
52

Greeley, J.; Nørskov, J. K. Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first- principles calculations. Electrochim. Acta 2007, 52, 5829– 5836.

53

Bligaard, T.; Nørskov, J. K. Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim. Acta 2007, 52, 5512–5516.

54

Kaminskii, P.; Kuznetsov, V. Features of alloy formation in Cu-Al and Ni-Cu systems. Sov. Phys. J. 1987, 30, 299–302.

55

Vitos, L.; Ruban, A. V.; Skriver, H. L.; Kollár, J. The surface energy of metals. Surf. Sci. 1998, 411, 186–202.

56

Hansen, H. A.; Rossmeisl, J.; Nørskov, J. K. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem. Chem. Phys. 2008, 10, 3722–3730.

57

Liu, L. C.; Samjeské, G.; Takao, S.; Nagasawa, K.; Iwasawa, Y. Fabrication of PtCu and PtNiCu multi-nanorods with enhanced catalytic oxygen reduction activities. J. Power Sources 2014, 253, 1–8.

58

Cao, X.; Han, Y.; Gao, C. Z.; Xu, Y.; Huang, X. M.; Willander, M.; Wang, N. Highly catalytic active PtNiCu nanochains for hydrogen evolution reaction. Nano Energy 2014, 9, 301–308.

File
nr-8-10-3394_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 February 2015
Revised: 17 May 2015
Accepted: 13 June 2015
Published: 11 September 2015
Issue date: October 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This research was supported by Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2013M3A6B1078882). The New and Renewable Energy R & D Program (No. 20113020030020) under the Ministry of Knowledge Economy, Republic of Korea partially supported this work. This research was performed using Tsubame 2.5 at the Global Scientific Information and Computing Center of the Tokyo Institute of Technology as a Research Project of HPCI systems (Project ID: hp140038). Author, Seunghyo Noh, also appreciates the Government of Japan for MEXT scholarship.

Return