Journal Home > Volume 8 , Issue 10

Nanostructured Mn3O4 was introduced to activated C (AC) by a novel sonochemical reaction, and the resulting nanocomposites were examined as supercapacitor electrodes. The sonication not only catalyzed the redox reaction but also promoted the diffusion of the precursors, causing the formation of coherent nanocomposites with Mn3O4 nanoparticles grown and uniformly distributed inside the mesopores of the AC. In addition, the extreme local condition in the sonochemical synthesis yielded an excessive amount of divalent manganese ions and oxygen vacancies. This novel microstructure endowed the sample with a superior performance, including a specific capacitance of 150 F/g compared with the value of 93 F/g for AC at a charge/discharge rate of 100 mA/g. A Li-ion capacitor delivered an energy density of 68 Wh/kg, compared with 41 Wh/kg for the AC capacitor at a power density of 210 W/kg.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Coherent Mn3O4-carbon nanocomposites with enhanced energy-storage capacitance

Show Author's information Chaofeng Liu1Huanqiao Song1Changkun Zhang1Yaguang Liu1Cuiping Zhang1Xihui Nan1Guozhong Cao1,2( )
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
Department of Materials Science and EngineeringUniversity of WashingtonSeattleWashington98195USA

Abstract

Nanostructured Mn3O4 was introduced to activated C (AC) by a novel sonochemical reaction, and the resulting nanocomposites were examined as supercapacitor electrodes. The sonication not only catalyzed the redox reaction but also promoted the diffusion of the precursors, causing the formation of coherent nanocomposites with Mn3O4 nanoparticles grown and uniformly distributed inside the mesopores of the AC. In addition, the extreme local condition in the sonochemical synthesis yielded an excessive amount of divalent manganese ions and oxygen vacancies. This novel microstructure endowed the sample with a superior performance, including a specific capacitance of 150 F/g compared with the value of 93 F/g for AC at a charge/discharge rate of 100 mA/g. A Li-ion capacitor delivered an energy density of 68 Wh/kg, compared with 41 Wh/kg for the AC capacitor at a power density of 210 W/kg.

Keywords: nanocomposite, sonochemical, Mn3O4, Li-on capacitor, activated C

References(60)

1

Yan, J.; Wang, Q.; Wei, T.; Fan, Z. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.

2

Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614.

3

Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171.

4

Hall, P. J.; Mirzaeian, M.; Fletcher, S. I.; Sillars, F. B.; Rennie, A. J. R.; Shitta-Bey, G. O.; Wilson, G.; Cruden, A.; Carter, R. Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 2010, 3, 1238–1251.

5

Yuan, L. Y.; Yao, B.; Hu, B.; Huo, K. F.; Chen, W.; Zhou, J. Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ. Sci. 2013, 6, 470–476.

6

Candelaria, S. L.; Garcia, B. B.; Liu, D. W.; Cao, G. Z. Nitrogen modification of highly porous carbon for improved supercapacitor performance. J. Mater. Chem. 2012, 22, 9884–9889.

7

Wei, W. F.; Cui, X. W.; Chen, W. X.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721.

8

Sevilla, M.; Mokaya, R. Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250.

9

Zhou, Y.; Candelaria, S. L.; Liu, Q.; Huang, Y. X.; Uchaker, E.; Cao, G. Z. Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability. J. Mater. Chem. A 2014, 2, 8472–8482.

10

Hulicova-Jurcakova, D.; Puziy, A. M.; Poddubnaya, O. I.; Suarez-Garcia, F.; Tascon, J. M. D.; Lu, G. Q. Highly stable performance of supercapacitors from phosphorus–enriched carbons. J. Am. Chem. Soc. 2009, 131, 5026–5027.

11

Garcia, B. B.; Candelaria, S. L.; Cao, G. Z. Nitrogenated porous carbon electrodes for supercapacitors. J Mater. Sci. 2012, 47, 5996–6004.

12

Huang, Y. X.; Candelaria, S. L.; Li, Y. W.; Li, Z. M.; Tian, J. J.; Zhang, L. L.; Cao, G. Z. Sulfurized activated carbon for high energy density supercapacitors. J. Power Sources 2014, 252, 90–97.

13

Milczarek, G.; Ciszewski, A.; Stepniak, I. Oxygen-doped activated carbon fiber cloth as electrode material for electrochemical capacitor. J. Power Sources 2011, 196, 7882–7885.

14

Wang, D. W.; Li, F.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem. Mater. 2008, 20, 7195–7200.

15

Zhang, L. L.; Candelaria, S. L.; Tian, J. J.; Li, Y.; Huang, Y. -X.; Cao, G. Z. Copper nanocrystal modified activated carbon for supercapacitors with enhanced volumetric energy and power density. J. Power Sources 2013, 236, 215–223.

16

Kim, M.; Hwang, Y.; Min, K.; Kim, J. Introduction of MnO2 nanoneedles to activated carbon to fabricate high-performance electrodes as electrochemical supercapacitors. Electrochim. Acta 2013, 113, 322–331.

17

Zhi, M.; Xiang, C.; Li, J.; Li, M.; Wu, N. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 2013, 5, 72–88.

18

Kim, M.; Hwang, Y.; Min, K.; Kim, J. Introduction of MnO2 nanoneedles to activated carbon to fabricate high-performance electrodes as electrochemical supercapacitors. Electrochim. Acta 2013, 113, 322–331.

19

Zhang, J. R.; Jiang, D. C.; Chen, B.; Zhu, J. J.; Jiang, L. P.; Fang, H. Q. Preparation and electrochemistry of hydrous ruthenium oxide/active carbon electrode materials for supercapacitor. J. Electrochem. Soc 2001, 148, A1362–A1367.

20

Wang, Y.; He, P.; Zhao, X.; Lei, W.; Dong, F. Coal tar residues-based nanostructured activated carbon/Fe3O4 composite electrode materials for supercapacitors. J. Solid State Electr. 2014, 18, 665–672.

21

Xu, H.; Zeiger, B. W.; Suslick, K. S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567.

22

Kawaoka, H.; Hibino, M.; Zhou, H.; Honma, I. Sonochemical synthesis of amorphous manganese oxide coated on carbon and application to high power battery. J. Power Sources 2004, 125, 85–89.

23

Lee, K. G.; Jeong, J. -M.; Lee, S. J.; Yeom, B.; Lee, M. -K.; Choi, B. G. Sonochemical-assisted synthesis of 3D graphene/ nanoparticle foams and their application in supercapacitor. Ultrason. Sonochem. 2015, 22, 422–428.

24

Xu, H. X.; Zeiger, B. W.; Suslick, K. S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567.

25

Brock, S. L.; Duan, N.; Tian, Z. R.; Giraldo, O.; Zhou, H.; Suib, S. L. A Review of porous manganese oxide materials. Chem. Mater. 1998, 10, 2619–2628.

26

Aurbach, D.; Talyosef, Y.; Markovsky, B.; Markevich, E.; Zinigrad, E.; Asraf, L.; Gnanaraj, J. S.; Kim, H. -J. Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim. Acta 2004, 50, 247–254.

27

Leng, K.; Zhang, F.; Zhang, L.; Zhang, T. F.; Wu, Y. P.; Lu, Y. H.; Huang, Y.; Chen, Y. S. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Res. 2013, 6, 581–592.

28

Smith, J. W. H.; McDonald, M.; Romero, J. V.; MacDonald, L.; Lee, J. R.; Dahn, J. R. Small and wide angle X-ray studies of impregnated activated carbons. Carbon 2014, 75, 420–431.

29

Lee, S. -W.; Bak, S. -M.; Lee, C. -W.; Jaye, C.; Fischer, D. A.; Kim, B. -K.; Yang, X. -Q.; Nam, K. -W.; Kim, K. -B. Structural changes in reduced graphene oxide upon MnO2 deposition by the redox reaction between carbon and permanganate ions. J. Phys. Chem. C 2014, 118, 2834–2843.

30

Jia, X.; Yan, C.; Chen, Z.; Wang, R.; Zhang, Q.; Guo, L.; Wei, F.; Lu, Y. Direct growth of flexible LiMn2O4/CNT lithium-ion cathodes. Chem. Commun. 2011, 47, 9669–9671.

31

Peng, Y. T.; Chen, Z.; Wen, J.; Xiao, Q. F.; Weng, D.; He, S. Y.; Geng, H.; Lu, Y. Hierarchical manganese oxide/carbon nanocomposites for supercapacitor electrodes. Nano Res. 2011, 4, 216–225.

32

Dong, R.; Ye, Q.; Kuang, L.; Lu, X.; Zhang, Y.; Zhang, X.; Tan, G.; Wen, Y.; Wang, F. Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transitionmetal ions. ACS Appl. Mater. Inter. 2013, 5, 9508–9516.

33

Lee, J. W.; Hall, A. S.; Kim, J. –D.; Mallouk, T. E. A Facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 2012, 24, 1158–1164.

34

Li, Z. P.; Mi, Y. Q.; Liu, X. H.; Liu, S.; Yang, S. R.; Wang, J. Q. Flexible graphene/MnO2 composite papers for supercapacitor electrodes. J. Mater. Chem. 2011, 21, 14706–14711.

35

Yan, J.; Fan, Z. J.; Wei, T.; Cheng, J.; Shao, B.; Wang, K.; Song, L. P.; Zhang, M. L. Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J. Power Sources 2009, 194, 1202–1207.

36

Wang, J. -G.; Yang, Y.; Huang, Z. -H.; Kang, F. Y. A highperformance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes. Carbon 2013, 61, 190–199.

37

Shchukin, D. G.; Radziuk, D.; Möhwald, H. Ultrasonic fabrication of metallic nanomaterials and nanoalloys. Annu. Rev. Mater. Res. 2010, 40, 345–362.

38

Didenko, Y. T.; McNamara, W. B.; Suslick, K. S. Hot spot conditions during cavitation in water. J. Am. Chem. Soc. 1999, 121, 5817–5818.

39

Flint, E. B.; Suslick, K. S. The temperature of cavitation. Science 1991, 253, 1397–1399.

40

Ohl, C. D.; Kurz, T.; Geisler, R.; Lindau, O.; Lauterborn, W. Bubble dynamics, shock waves and sonoluminescence. Philos. Trans. R Soc. Lond. Ser. A–Math. Phys. Eng. Sci. 1999, 357, 269–294.

41

Vinodgopal, K.; Neppolian, B.; Lightcap, I. V.; Grieser, F.; Ashokkumar, M.; Kamat, P. V. Sonolytic design of graphene-Au nanocomposites. Simultaneous and sequential reduction of graphene oxide and Au(III). J. Phys. Chem. Lett. 2010, 1, 1987–1993.

42

Wei, W.; Cui, X.; Chen, W.; Ivey, D. G. Manganese oxidebased materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721.

43

Yan, D.; Yan, P. X.; Cheng, S.; Chen, J. T.; Zhuo, R. F.; Feng, J. J.; Zhang, G. A. Fabrication, in-depth characterization, and formation mechanism of crystalline porous birnessite MnO2 film with amorphous bottom layers by hydrothermal method. Cryst. Growth. Des. 2009, 9, 218–222.

44

Caruso, R. A.; Ashokkumar, M.; Grieser, F. Sonochemical formation of gold sols. Langmuir 2002, 18, 7831–7836.

45

Zhang, J. L.; Du, J. M.; Han, B. X.; Liu, Z. M.; Jiang, T.; Zhang, Z. F. Sonochemical formation of single-crystalline gold nanobelts. Angew. Chem. 2006, 118, 1134–1137.

46

Jiang, L. -P.; Xu, S.; Zhu, J. -M.; Zhang, J. –R.; Zhu, J. -J.; Chen, H. -Y. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings. Inorg. Chem. 2004, 43, 5877–5883.

47

Jin, X.; Zhou, W.; Zhang, S.; Chen, G. Z. Nanoscale microelectrochemical cells on carbon nanotubes. Small 2007, 3, 1513–1517.

48

Qiao, H.; Li, J.; Fu, J. P.; Kumar, D.; Wei, Q. F.; Cai, Y. B.; Huang, F. L. Sonochemical synthesis of ordered SnO2/CMK-3 nanocomposites and their lithium storage Properties. ACS Appl. Mater. Inter. 2011, 3, 3704–3708.

49

Wu, M.; Snook, G. A.; Chen, G. Z.; Fray, D. J. Redox deposition of manganese oxide on graphite for supercapacitors. Electrochem. Commun. 2004, 6, 499–504.

50

Chang, J.; Jin, M. H.; Yao, F.; Kim, T. H.; Le, V. T.; Yue, H. Y.; Gunes, F.; Li, B.; Ghosh, A.; Xie, S. S. et al. Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv. Funct. Mater. 2013, 23, 5074–5083.

51

Garcia, B. B.; Candelaria, S. L.; Liu, D.; Sepheri, S.; Cruz, J. A.; Cao, G. High performance high-purity sol-gel derived carbon supercapacitors from renewable sources. Renewable Energy 2011, 36, 1788–1794.

52

Brousse, T.; Marchand, R.; Taberna, P. L.; Simon, P. TiO2 (B)/activated carbon non–aqueous hybrid system for energy storage. J. Power Sources 2006, 158, 571–577.

53

Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193.

54

Hahn, B. P.; Long, J. W.; Mansour, A. N.; Pettigrew, K. A.; Osofsky, M. S.; Rolison, D. R. Electrochemical Li-ion storage in defect spinel iron oxides: The critical role of cation vacancies. Energy Environ. Sci. 2011, 4, 1495-1502.

55

Liu, D. W.; Liu, Y. Y.; Garcia, B. B.; Zhang, Q. F.; Pan, A. Q.; Jeong, Y. -H.; Cao, G. Z. V2O5 xerogel electrodes with much enhanced lithium-ion intercalation properties with N2 annealing. J. Mater. Chem. 2009, 19, 8789–8795.

56

Ruiz, V.; Blanco, C.; Santamaría, R.; Ramos-Fernández, J. M.; Martínez-Escandell, M.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F. An activated carbon monolith as an electrode material for supercapacitors. Carbon 2009, 47, 195–200.

57

Xing, W.; Huang, C. C.; Zhuo, S. P.; Yuan, X.; Wang, G. Q.; Hulicova–Jurcakova, D.; Yan, Z. F.; Lu, G. Q. Hierarchical porous carbons with high performance for supercapacitor electrodes. Carbon 2009, 47, 1715–1722.

58

Du Pasquier, A.; Plitz, I.; Menocal, S.; Amatucci, G. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J. Power Sources 2003, 115, 171–178.

59

Gao, F.; Qu, J.; Zhao, Z.; Zhou, Q.; Li, B.; Qiu, J. A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application. Carbon 2014, 80, 640–650.

60

Nagamuthu, S.; Vijayakumar, S.; Muralidharan, G. Synthesis of Mn3O4/amorphous carbon nanoparticles as electrode material for high performance supercapacitor applications. Energy & Fuels 2013, 27, 3508–3515.

File
nr-8-10-3372_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 April 2015
Revised: 05 June 2015
Accepted: 09 June 2015
Published: 08 September 2015
Issue date: October 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by the "Thousands Talents" Program for Pioneer Researcher and His Innovation Team, China. This work was also supported by the National Natural Science Foundation of China (No.51374029), Program for New Century Excellent Talents in University (No. NCET-13-0668), Fundamental Research Funds for the Central Universities (No. FRF-TP-14-008C1) and China Postdoctoral Science Foundation (No. 2014M550675).

Return