Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Finding inexpensive electrodes with high activity and stability is key to realize the practical application of fuel cells. Here, we report the fabrication of three-dimensional (3D) porous nickel nanoflower (3D-PNNF) electrodes via an in situ reduction method. The 3D-PNNF electrodes have a high surface area, show tight binding to the electroconductive substrate, and most importantly, have superaerophobic (bubble repellent) surfaces. Therefore, the electrocatalytic hydrazine oxidation performance of the 3D-PNNF electrodes was much higher than that of commercial Pt/C catalysts because of its ultra-weak gas-bubble adhesion and ultra-fast gas-bubble release. Furthermore, the 3D-PNNF electrodes showed ultra-high stability even under a high current density (260 mA/cm2), which makes it promising for practical applications. In addition, the construction of superaerophobic nanostructures could also be beneficial for other gas evolution processes (e.g., hydrogen evolution reaction).
Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.
Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.
Jung, N.; Chung, D. Y.; Ryu, J.; Yoo, S. J.; Sung, Y. -E. Ptbased nanoarchitecture and catalyst design for fuel cell applications. Nano Today 2014, 9, 433–456.
Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 2013, 5, 300–306.
Feng, J.; Gong, M.; Kenney, M. J.; Wu, J. Z.; Zhang, B.; Li, Y. G.; Dai, H. J. Nickel-coated silicon photocathode for water splitting in alkaline electrolytes. Nano Res. 2015, 8, 1577–1583.
Wang, C.; Waje, M.; Wang, X.; Tang, J. M.; Haddon, R. C.; Yan, Y. S. Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett. 2004, 4, 345–348.
Bashyam, R.; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 2006, 443, 63–66.
Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energ. Environ. Sci. 2011, 4, 3167–3192.
Wang, R. Y.; Liu, J. G.; Liu, P.; Bi, X. X.; Yan, X. L.; Wang, W. X.; Meng, Y. F.; Ge, X. B.; Chen, M. W.; Ding, Y. Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Res. 2014, 7, 1569–1580.
Gasteiger, H. A.; Markovic, N. M. Just a dream—or future reality? Science 2009, 324, 48–49.
Zheng, F. L.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core–shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.
Wang, D. L.; Xin, H. L. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.
Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.
Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.
Bing, Y. H.; Liu, H. S.; Zhang, L.; Ghosh, D.; Zhang, J. J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 2010, 39, 2184–2202.
Zhou, X.; Qiao, J.; Yang, L.; Zhang, J. A review of graphenebased nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv. Energ. Mater. 2014, 4, 1301523.
Jia, F. L.; Zhao, J. H.; Yu, X. X. Nanoporous Cu film/Cu plate with superior catalytic performance toward electro-oxidation of hydrazine. J. Power Sources 2013, 222, 135–139.
Karim-Nezhad, G.; Jafarloo, R.; Dorraji, P. S. Copper (hydr) oxide modified copper electrode for electrocatalytic oxidation of hydrazine in alkaline media. Electrochim. Acta 2009, 54, 5721–5726.
Jeon, T. -Y.; Watanabe, M.; Miyatake, K. Carbon segregationinduced highly metallic Ni nanoparticles for electrocatalytic oxidation of hydrazine in alkaline media. ACS Appl. Mater. Interfaces 2014, 6, 18445–18449.
Sanabria-Chinchilla, J.; Asazawa, K.; Sakamoto, T.; Yamada, K.; Tanaka, H.; Strasser, P. Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways. J. Am. Chem. Soc. 2011, 133, 5425–5431.
Sakamoto, T.; Asazawa, K.; Sanabria-Chinchilla, J.; Martinez, U.; Halevi, B.; Atanassov, P.; Strasser, P.; Tanaka, H. Combinatorial discovery of Ni-based binary and ternary catalysts for hydrazine electrooxidation for use in anion exchange membrane fuel cells. J. Power Sources 2014, 247, 605–611.
Zhong, X.; Yang, H. D.; Guo, S. J.; Li, S. W.; Gou, G. L.; Niu, Z. Y.; Dong, Z. P.; Lei, Y. J.; Jin, J.; Li, R. In situ growth of Ni–Fe alloy on graphene-like MoS2 for catalysis of hydrazine oxidation. J. Mater. Chem. 2012, 22, 13925–13927.
Burke, L.; O'Dwyer, K. Mediation of oxidation reactions at noble metal anodes by low levels of in situ generated hydroxy species. Electrochim. Acta 1989, 34, 1659–1664.
Fukumoto, Y.; Matsunaga, T.; Hayashi, T. Electrocatalytic activities of metal electrodes in anodic oxidation of hydrazine in alkaline solution. Electrochim. Acta 1981, 26, 631–636.
Ye, L. Q.; Li, Z. P.; Qin, H. Y.; Zhu, J. K.; Liu, B. H. Hydrazine electrooxidation on a composite catalyst consisting of nickel and palladium. J. Power Sources 2011, 196, 956–961.
Lu, Z. Y.; Sun, M.; Xu, T. H.; Li, Y. J.; Xu, W. W; Chang, Z.; Ding, Y.; Sun, X. M.; Jiang, L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater. 2015, 27, 2361–2366.
Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z.; Huang, W. Y.; Xin, H. L. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.
Wang, Y.; Chen, Y. G.; Nan, C. Y.; Li, L. L.; Wang, D. S.; Peng, Q.; Li, Y. D. Phase-transfer interface promoted corrosion from PtNi10 nanoctahedra to Pt4Ni nanoframes. Nano Res. 2015, 8, 140–155.
Hu, C. G.; Cheng, H. H.; Zhao, Y.; Hu, Y.; Liu, Y.; Dai, L. M.; Qu, L. T. Newly-designed complex ternary Pt/PdCu nanoboxes anchored on three-dimensional graphene framework for highly efficient ethanol oxidation. Adv. Mater. 2012, 24, 5493–5498.
Liu, H. -L.; Nosheen, F.; Wang. X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.
Xiao, B.; Niu, Z. Q.; Wang, Y. -G.; Jia, W.; Shang, J.; Zhang, L.; Wang, D. S.; Fu, Y.; Zeng, J.; He, W. et al. Copper nanocrystal plane effect on stereoselectivity of catalytic deoxygenation of aromatic epoxides. J. Am. Chem. Soc. 2015, 137, 3791–3794.
Lee, I. -S.; Kim, D. -H.; Kim, H. -E.; Jung, Y. -C.; Han, C. -H. Biological performance of calcium phosphate films formed on commercially pure Ti by electron-beam evaporation. Biomaterials 2002, 23, 609–615.
Lu, Z. Y.; Chang, Z.; Zhu, W.; Sun, X. M. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun. 2011, 47, 9651–9653.
Hou, J. X.; Kuang, Y.; Shen, H. Q.; Cao, H.; Luo, L.; Liu, J. F.; Wan, P. B.; Chen, B. Q.; Sun, X. M.; Tan, T. W. Solvothermal synthesis of FeCo nanoparticles for magnetocontrollable biocatalysis. RSC Adv. 2014, 4, 11136–11141.
Lu, Z.; Zhu, W.; Yu, X.; Zhang, H.; Li, Y.; Sun, X.; Wang, X.; Wang, H.; Wang, J.; Luo, J. Ultrahigh hydrogen evolution performance of under-water "superaerophobic" MoS2 nanostructured electrodes. Adv. Mater. 2014, 26, 2683–2687.