Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The global demand for resource sustainability is growing. Thus, the development of single-source, environment-friendly colloidal semiconductor nanocrystal (NC) phosphors with broadband emission spectra is highly desirable for use as color converters in white light-emitting diodes (WLEDs). We report herein the gram-scale synthesis of single-source, cadmium-free, dual-emissive Mn-doped Zn–Cu–In–S NCs (d-dots) by a simple, non-injection, low-cost, one-pot approach. This synthesis method led to the formation of NCs with continuously varying compositions in a radial direction because each precursor had a different reactivity. Consequently, the d-dots exhibited two emission bands, one that could be attributed to Mn emission and a second that could be ascribed to the band edge of the Zn–Cu–In–S NCs. The emission peaks assigned to band edge were tunable by modifying the particle size and composition. The prepared d-dots also exhibited the characteristic zero self-absorption, a quantum yield of 46%, and good thermal stability. Combining a commercial blue light-emitting diode (LED) chip with optimized d-dots as color converters gave a high color rendering index of up to 90, Commission Internationale de l'eclairage color coordinates of (0.332, 0.321), and a correlated color temperature of 5, 680 K. These results suggest that cadmium-free, thermally stable, single-phase d-dot phosphors have potential applications in WLEDs.
Tsao, J. Y. Light Emitting Diodes (LEDs) for General Illumination: An OIDA Technology Roadmap Update 2002; Optoelectronics Industry Development Association: Washington, DC, 2002.
Nakamura, S.; Fasol, G. White LEDs. In The Blue Laser Diode: GaN Based Light Emitters and Lasers. Springer: Berlin, 1996; pp 216–221.
Nakamura, S.; Mukai, T.; Senoh, M. Candela-class highbrightness InGaN/AlGaN double heterostructure blue-lightemitting diodes. Appl. Phys. Lett. 1994, 64, 1687–1689.
Schubert, E. F.; Kim, J. K. Solid-state light sources getting smart. Science 2005, 308, 1274–1278.
Bachmann, V.; Ronda, C.; Meijerink, A. Temperature quenching of yellow Ce3+ luminescence in YAG: Ce. Chem. Mater. 2009, 21, 2077–2084.
Pimputkar, S.; Speck, J. S.; Den-Baars, S. P.; Nakamura, S. Prospects for LED lighting. Nat. Photonics 2009, 3, 180–182.
Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009, 459, 234–238.
Tonzani, S. Lighting technology: Time to change the bulb. Nature 2009, 459, 312–314.
Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.
Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.
Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775.
Qin, L.; Li, D. Z.; Zhang, Z. L.; Wang, K. F.; Ding, H.; Xie, R. G.; Yang, W. S. The determination of extinction coefficient of CuInS2 and ZnCuInS3 multinary nanocrystals. Nanoscale 2012, 4, 6360–6364.
Rogach, A. L.; Gaponik, N.; Lupton, J. M.; Bertoni, C.; Gallardo, D. E.; Dunn, S.; Li Pira, N.; Paderi, M.; Repetto, P.; Romanov, S. G. et al. Light-emitting diodes with semiconductor nanocrystals. Angew. Chem. Int. Ed. 2008, 47, 6538–6549.
Dai, Q. Q.; Duty, C. E.; Hu, M. Z. Semiconductor nanocrystals based on white light-emitting diodes. Small 2010, 6, 1577–1588.
Demir, H. V.; Nizamoglu, S.; Erdem, T.; Mutlugun, E.; Gaponik, N.; Eychmüller, A. Quantum dot integrated LEDs using photonic and excitonic color conversion. Nano Today 2011, 6, 632–647.
Nag, A.; Sarma, D. D. White light from Mn2+-doped CdSe nanocrystals: A new approach. J. Phys. Chem. C 2007, 111, 13641–13644.
Cai, W.; Li, Z. G.; Sui, J. H. A facile single-source route to CdS nanorods. Nanotechnology 2008, 19, 465605.
Fang, X. M.; Roushan, M.; Zhang, R. B.; Peng, J.; Zeng, H. P.; Li, J. Tuning and enhancing white light emission of Ⅱ–Ⅵ based inorganic–organic hybrid semiconductors as singlephased phosphors. Chem. Mater. 2012, 24, 1710–1717.
Chen, H. S.; Chung, S. R.; Chen, T. Y.; Wang, K. W. Correlation between surface state and band edge emission of white light ZnxCd1-xS nanocrystals. J. Mater. Chem. C 2014, 2, 2664–2667.
Xie, J. F.; Li, S.; Wang, R. X.; Zhang, H.; Xie, Y. Grain boundary engineering in atomically-thin nanosheets achieving bright white light emission. Chem. Sci. 2014, 5, 1328–1335.
Xuan, T, T.; Liu, J. Q.; Xie, R. J.; Li, H. L.; Sun, Z. Microwave-assisted synthesis of CdS/ZnS: Cu quantum dots for white light-emitting diodes with high color rendition. Chem. Mater. 2015, 27, 1187–1193.
Schreuder, M. A.; Gosnell, J. D.; Smith, N. J.; Warnement, M. R.; Weiss, S. M.; Rosenthal, S. J. Encapsulated white-light CdSe nanocrystals as nanophosphors for solid-state lighting. J. Mater. Chem. 2008, 18, 970–975.
Schreuder, M. A.; Xiao, K.; Ivanov, I. N.; Weiss, S. M.; Rosenthal, S. J. White light-emitting diodes based on ultrasmall CdSe nanocrystal electroluminescence. Nano Lett. 2010, 10, 573–576.
Dukes, A. D.; Samson, P. C.; Keene, J. D.; Davis, L. M.; Wikswo, J. P.; Rosenthal, S. J. Single-nanocrystal spectroscopy of white-light-emitting CdSe nanocrystals. J. Phys. Chem. A 2011, 115, 4076–4081.
Chandramohan, S.; Ryu, B. D.; Kim, H. K.; Hong, C. H.; Suh, E. K. Trap-state-assisted white light emission from a CdSe nanocrystal integrated hybrid light-emitting diode. Opt. Lett. 2011, 36, 802–804.
Krause, M. M.; Mooney, J.; Kambhampati, P. Chemical and thermodynamic control of the surface of semiconductor nanocrystals for designer white light emitters. ACS Nano 2013, 7, 5922–5929.
Shen, C. C.; Tseng, W. L. One-step synthesis of white-lightemitting quantum dots at low temperature. Inorg. Chem. 2009, 48, 8689–8694.
Song, W. S.; Yang, H. Efficient white-light-emitting diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots. Chem. Mater. 2012, 24, 1961–1967.
Chen, B. K.; Zhong, H. Z.; Wang, M. X.; Liu, R. B.; Zou, B. S. Integration of CuInS2-based nanocrystals for high efficiency and high color rendering white light emitting diodes. Nanoscale 2013, 5, 3514–3519.
Song, W. S.; Kim, J. H.; Lee, J. H.; Lee, H. S.; Do, Y. R.; Yang, H. Synthesis of color-tunable Cu–In–Ga–S solid solution quantum dots with high quantum yields for application to white light-emitting diodes. J. Mater. Chem. 2012, 22, 21901–21908.
Zhang, J.; Xie, R. G.; Yang, W. S. A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters. Chem. Mater. 2011, 23, 3357–3361.
Song, W. S.; Yang, H. Fabrication of white light-emitting diodes based on solvothermally synthesized copper indium sulfide quantum dots as color converters. Appl. Phys. Lett. 2012, 100, 183104.
Jang, E. P.; Song, W. S.; Lee, K. H.; Yang, H. Preparation of a photo-degradation- resistant quantum dot–polymer composite plate for use in the fabrication of a high-stability whitelight- emitting diode. Nanotechnology 2013, 24, 045607.
Chuang, P. H.; Lin, C. C.; Liu, R. S. Emission-tunable CuInS2/ZnS quantum dots: Structure, optical properties, and application in white light-emitting diodes with high color rendering index. ACS Appl. Mater. Interfaces 2014, 6, 15379–15387.
Ziegler, J.; Xu, S.; Kucur, E.; Meister, F.; Batentschuk, M.; Gindele, F.; Nann, T. Silica-coated InP/ZnS nanocrystals as converter material in white LEDs. Adv. Mater. 2008, 20, 4068–4073.
Kim, K.; Jeong, S.; Woo, J. Y.; Han, C. S. Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs. Nanotechnology 2011, 23, 065602.
Kim, S.; Kim, T.; Kang, M.; Kwak, S. K.; Yoo, T. W.; Park, L. S.; Yang, I.; Hwang, S.; Lee, J. E.; Kim, S. K. et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J. Am. Chem. Soc. 2012, 134, 3804–3809.
Yang, X. Y.; Zhao, D. W.; Leck, K. S.; Tan, S. T.; Tang, Y. X.; Zhao, J. L.; Demir, H. V.; Sun, X. W. Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot lightemitting diodes. Adv. Mater. 2012, 24, 4180–4185.
Yang, X. Y.; Divayana, Y.; Zhao, D. W.; Leck, K. S.; Lu, F.; Tan, S. T.; Abiyasa, A. P.; Zhao, Y. B.; Demir, H. V.; Sun, X. W. A bright cadmium-free, hybrid organic/quantum dot white light-emitting diode. Appl. Phys. Lett. 2012, 101, 233110.
Lim, J.; Park, M.; Bae, W. K.; Lee, D.; Lee, S.; Lee, C.; Char, K. Highly efficient cadmium-free quantum dot lightemitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots. ACS Nano 2013, 7, 9019- 9026.
Lee, J.; Sundar, V. C.; Heine, J. R.; Bawendi, M. G.; Jensen, K. F. Full color emission from Ⅱ–Ⅵ semiconductor quantum dot–polymer composites. Adv. Mater. 2000, 12, 1102–1105.
Li, Y. Q.; Rizzo, A.; Cingolani, R.; Gigli, G. Bright whitelight- emitting device from ternary nanocrystal composites. Adv. Mater. 2006, 18, 2545–2548.
Nizamoglu, S.; Ozel, T.; Sari, E.; Demir, H. V. White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes. Nanotechnology 2007, 18, 065709.
Mueller, A. H.; Petruska, M. A.; Achermann, M.; Werder, D. J.; Akhadov, E. A.; Koleske, D. D.; Hoffbauer, M. A.; Klimov, V. I. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 2005, 5, 1039–1042.
Bol, A. A.; Meijerink, A. Luminescence of nanocrystalline ZnS: Pb2+. Phys. Chem. Chem. Phys. 2001, 3, 2105–2112.
Chen, H. S.; Wang, S. J. J.; Lo, C. J.; Chi, J. Y. White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes. Appl. Phys. Lett. 2005, 86, 131905.
Nizamoglu, S.; Mutlugun, E.; Akyuz, O.; Perkgoz, N. K.; Demir, H. V.; Liebscher, L.; Sapra, S.; Gaponik, N.; Eychmüller, A. White emitting CdS quantum dot nanoluminophores hybridized on near-ultraviolet LEDs for high-quality white light generation and tuning. New J. Phys. 2008, 10, 023026.
Bowers, M. J.; McBride, J. R.; Rosenthal, S. J. White-light emission from magic-sized cadmium selenide nanocrystals. J. Am. Chem. Soc. 2005, 127, 15378–15379.
Rosson, T. E.; Claiborne, S. M.; McBride, J. R.; Stratton, B. S.; Rosenthal, S. J. Bright white light emission from ultrasmall cadmium selenide nanocrystals. J. Am. Chem. Soc. 2012, 134, 8006–8009.
Huang, B.; Dai, Q.; Zhuo, N. Z.; Jiang, Q. S.; Shi, F. H.; Wang, H. B.; Zhang, H. C.; Liao, C.; Cui, Y. P.; Zhang, J. Y. Bicolor Mn-doped CuInS2/ZnS core/shell nanocrystals for white light-emitting diode with high color rendering index. J. Appl. Phys. 2014, 116, 094303.
Sapra, S.; Mayilo, S.; Klar, T. A.; Rogach, A. L.; Feldmann, J. Bright white-light emission from semiconductor nanocrystals: By chance and by design. Adv. Mater. 2007, 19, 569–572.
Nizamoglu, S.; Mutlugun, E.; Özel, T.; Demir, H. V.; Sapra, S.; Gaponik, N.; Eychmüller, A. Dual-color emitting quantumdot- quantum-well CdSe-ZnS heteronanocrystals hybridized on light emitting diodes for high-quality white light generation. Appl. Phys. Lett. 2008, 92, 113110.
Battaglia, D.; Blackman, B.; Peng, X. G. Coupled and decoupled dual quantum systems in one semiconductor nanocrystal. J. Am. Chem. Soc. 2005, 127, 10889–10897.
Lutich, A. A.; Mauser, C.; Como, E. D.; Huang, J.; Vaneski, A.; Talapin, D. V.; Rogach, A. L.; Feldmann, J. Multiexcitonic dual emission in CdSe/CdS tetrapods and nanorods. Nano Lett. 2010, 10, 4646–4650.
Vlaskin, V. A.; Janssen, N.; van Rijssel, J.; Beaulac, R.; Gamelin, D. R. Tunable dual emission in doped semiconductor nanocrystals. Nano Lett. 2010, 10, 3670–3674.
McLaurin, E. J.; Fataftah, M. S.; Gamelin, D. R. One-step synthesis of alloyed dual-emitting semiconductor nanocrystals. Chem. Commun. 2013, 49, 39–41.
McLaurin, E. J.; Bradshaw, L. R.; Gamelin, D. R. Dualemitting nanoscale temperature sensors. Chem. Mater. 2013, 25, 1283–1292.
Soni, U.; Pal, A.; Singh, S.; Mittal, M.; Yadav, S.; Elangovan, R.; Sapra, S. Simultaneous Type-Ⅰ/Type-Ⅱ emission from CdSe/CdS/ZnSe nano-heterostructures. ACS Nano 2014, 8, 113–123.
Brovelli, S.; Bae, W. K.; Galland, C.; Giovanella, U.; Meinardi, F.; Klimov, V. I. Dual-color electroluminescence from dotin- bulk nanocrystals. Nano Lett. 2014, 14, 486–494.
Brovelli, S.; Bae, W. K.; Meinardi, F.; González, B. S.; Lorenzon, M.; Galland, C.; Klimov, V. I. Electrochemical control of two-color emission from colloidal dot in-bulk nanocrystals. Nano Lett. 2014, 14, 3855–3863.
Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319, 1776–1779.
Pradhan, N.; Goorskey, D.; Thessing, J.; Peng, X. G. An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc. 2005, 127, 17586–17587.
Xie, R. G.; Peng, X. G. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and colortunable NIR emitters. J. Am. Chem. Soc. 2009, 131, 10645–10651.
Jana, S.; Srivastava, B. B.; Pradhan, N. Correlation of dopant states and host bandgap in dual-doped semiconductor nanocrystals. J. Phys. Chem. Lett. 2011, 2, 1747–1752.
Buonsanti, R.; Milliron, D. J. Chemistry of doped colloidal nanocrystals. Chem. Mater. 2013, 25, 1305–1317.
Zhang, J. Z.; Cooper, J. K.; Gul, S. Rational co-doping as a strategy to improve optical properties of doped semiconductor quantum dots. J. Phys. Chem. Lett. 2014, 5, 3694–3700.
Cao, S.; Li, C. M.; Wang, L.; Shang, M. H.; Wei, G. D.; Zheng, J. J.; Yang, W. Y. Long-lived and well-resolved Mn2+ ion emissions in CuInS-ZnS quantum dots. Sci. Rep. 2014, 4, 7510.
Zeng, R. S.; Zhang, T. T.; Dai, G. Z.; Zou, B. S. Highly emissive, color-tunable, phosphine-free Mn: ZnSe/ZnS core/ shell and Mn: ZnSeS shell-alloyed doped nanocrystals. J. Phys. Chem. C 2014, 7, 3005–3010.
Nag, A.; Sarma, D. D. White light from Mn2+-doped CdS nanocrystals: A new approach. J. Phys. Chem. C 2007, 111, 13641–13644.
Quan, Z. W.; Yang, D. M.; Li, C. X.; Kong, D. Y.; Yang, P. P.; Cheng, Z. Y.; Lin. J. Multicolor tuning of manganese-doped ZnS colloidal nanocrystals. Langmuir 2009, 25, 10259–10262.
Lü, X. D.; Yang, J.; Fu, Y. Q.; Liu, Q. Q.; Qi, B.; Lu, C. L.; Su, Z. M. White light emission from Mn2+ doped ZnS nanocrystals through the surface chelating of 8-hydroxyquinoline- 5-sulfonic acid. Nanotechnology 2010, 21, 115702.
Panda, S. K.; Hickey, S. G.; Demir, H. V.; Eychmüller, A. Bright white-light emitting manganese and copper co-doped ZnSe quantum dots. Angew. Chem. Int. Ed. 2011, 50, 4432–4436.
Luong, B. T.; Hyeong, E.; Yoon, S.; Choi, J.; Kim, N. Facile synthesis of UV-white light emission ZnSe/ZnS: Mn core/ (doped) shell nanocrystals in aqueous phase. RSC Adv. 2013, 3, 23395–23401.
Sharma, V. K.; Guzelturk, B.; Erdem, T.; Kelestemur, Y.; Demir, H. V. Tunable white-light-emitting Mn-doped ZnSe nanocrystals. ACS Appl. Mater. Interfaces 2014, 6, 3654–3660.
Liu, Q. H.; Deng, R. P.; Ji, X. L.; Pan, D. C. Alloyed Mn–Cu–In–S nanocrystals: A new type of diluted magnetic semiconductor quantum dots. Nanotechnology 2012, 23, 255706.
Ding, K.; Jing, L. H.; Liu, C. Y.; Hou, Y.; Gao, M. Y. Magnetically engineered Cd-free quantum dots as dualmodality probes for fluorescence/magnetic resonance imaging of tumors. Biomaterials 2014, 35, 1608–1617.
Manna, G.; Jana, S.; Bose, R.; Pradhan, N. Mn-doped multinary CIZS and AIZS nanocrystals. J. Phys. Chem. Lett. 2012, 3, 2528–2534.
Zhang, Z. L.; Liu, D.; Li, D. Z.; Huang, K. K.; Zhang, Y.; Shi, Z.; Xie, R. G.; Han, M. Y.; Wang, Y.; Yang, W. S. Dual emissive Cu: InP/ZnS/InP/ZnS nanocrystals: Single-source "greener" emitters with flexibly tunable emission from visible to near-infrared and their application in white light emitting diodes. Chem. Mater. 2015, 27, 1405–1411.
Xie, R. G.; Rutherford, M.; Peng, X. G. Formation of highquality Ⅰ-Ⅲ-Ⅵ semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J. Am. Chem. Soc. 2009, 131, 5691–5697.
Zhong, X. H.; Han, M. Y.; Dong, Z. L.; White, T. J.; Knoll, W. Composition-tunable ZnxCd1–xSe nanocrystals with high luminescence and stability. J. Am. Chem. Soc. 2003, 125, 8589–8594.
Zhong, X. H.; Zhang, Z. H.; Liu, S. H.; Han, M. Y.; Knoll, W. Embryonic nuclei-induced alloying process for the reproducible synthesis of blue-emitting ZnxCd1–xSe nanocrystals with long-time thermal stability in size distribution and emission wavelength. J. Phys. Chem. B 2004, 108, 15552–15559.
Bae, W. K.; Char, K.; Hur, H.; Lee, S. Single-step synthesis of quantum dots with chemical composition gradients. Chem. Mater. 2008, 20, 531–539.
Deng, Z. T.; Yan, H.; Liu, Y. Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method. J. Am. Chem. Soc. 2009, 131, 17744–17745.
Cho, J.; Jung, Y. K.; Lee, J. K. Kinetic studies on the formation of various Ⅱ-Ⅵ semiconductor nanocrystals and synthesis of gradient alloy quantum dots emitting in the entire visible range. J. Mater. Chem. 2012, 22, 10827–10833.
Maikov, G. I.; Vaxenburg, R.; Sashchiuk, A.; Lifshitz, E. Composition-tunable optical properties of colloidal Ⅳ-Ⅵ quantum dots, composed of core/shell heterostructures with alloy components. ACS Nano 2010, 4, 6547–6556.
Yang, Y. A.; Chen, O.; Angerhofer, A.; Cao, Y. C. Radialposition- controlled doping in CdS/ZnS core/shell nanocrystals. J. Am. Chem. Soc. 2006. 128, 12428–12429.
Chen, H. Y.; Maiti, S.; Son, D. H. Doping location-dependent energy transfer dynamics in Mn-doped CdS/ZnS nanocrystals. ACS Nano 2012, 6, 583–591.
Chen, H. Y.; Chen, T. Y.; Son, D. H. Measurement of energy transfer time in colloidal Mn-doped semiconductor nanocrystals. J. Phys. Chem. C 2010, 114, 4418–4423.
Chen, O.; Shelby. D. E.; Yang Y. A.; Zhuang J. Q.; Wang T.; Niu C. G.; Omenetto N.; Cao, Y. C. Excitation-intensitydependent color-tunable dual emissions from manganesedoped CdS/ZnS core/shell nanocrystals. Angew. Chem. Int. Ed. 2010, 122, 10330–10333.
Vlaskin, V. A.; Janssen, N.; van Rijssel, J.; Beaulac, R.; Amelin, D. R. Tunable dual emission in doped semicondutor nanocrystals. Nano Lett. 2010, 10, 3670–3674.
Zhong, H. Z.; Zhou, Y.; Ye, M. F.; He, Y. J.; Ye, J. P.; He, C.; Yang, C. H.; Li, Y. F. Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem. Mater. 2008, 20, 6434–6443.
Santra, S.; Yang, H.; Holloway, P. H.; Stanley, J. T.; Mericle, R. A. Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS: Mn/ZnS quantum dots: A multifunctional probe for bioimaging. J. Am. Chem. Soc. 2005, 127, 1656–1657.
Santra, P. K.; Kamat, P. V. Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%. J. Am. Chem. Soc. 2012, 134, 2508–2511.
Wood, V.; Halpert, J. E.; Panzer, M. J.; Bawendi, M. G.; Bulovic, V. Alternating current driven electroluminescence from ZnSe/ZnS: Mn/ZnS nanocrystals. Nano Lett. 2009, 9, 2367–2371.
Srivastava, B. B.; Jana, S.; Karan, N. S.; Paria, S.; Jana, N. R.; Sarma, D. D.; Pradhan, N. Highly luminescent Mn-doped ZnS nanocrystals: Gram-scale synthesis. J. Phys. Chem. Lett. 2010, 1, 1454–1458.
Zeng, R.; Zhang, T.; Dai, G.; Zou, B. Highly emissive, color-tunable, phosphinefree Mn: ZnSe/ZnS core/shell and Mn: ZnSeS shell-alloyed doped nanocrystals. J. Phys. Chem. C 2011, 115, 3005–3010.
Pan, D. C.; An, L. J.; Sun, Z. M.; Hou, W.; Yang, Y.; Yang, Z. Z.; Lu, Y. F. Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J. Am. Chem. Soc. 2008, 130, 5620–5621.
Park, J.; Kim, S. -W. CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photo-luminescence. J. Mater. Chem. 2011, 21, 3745–3750.
Chen, Y. Y.; Li, S. J.; Huang, L. J.; Pan, D. C. Green and facile synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots. Inorg. Chem. 2013, 52, 7819–7821.
Chen, B. K.; Zhong, H. Z.; Zhang, W. Q.; Tan, Z. A.; Li, Y. F.; Yu, C. R.; Zhai, T. Y.; Bando, Y.; Yang, S. Y.; Zou, B. S. Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance. Adv. Funct. Mater. 2012, 22, 2081–2088.
Zhang, W. J.; Lou, Q.; Ji, W. Y.; Zhao, J. L.; Zhong, X. H. Color-tunable highly bright photoluminescence of cadmiumfree Cu doped Zn-In-S nanocrystals and electroluminescence. Chem. Mater. 2014, 26, 1204–1212.
De Trizio, L.; Prato, M.; Genovese, A.; Casu, A.; Povia, M.; Simonutti, R.; Alcocer, M. J. P.; D' Andrea, C.; Tassone, F.; Manna, L. Strongly fluorescent quaternary Cu-In-Zn-S nanocrystals prepared from Cu1-xInS2 nanocrystals by partial cation exchange. Chem. Mater. 2012, 24, 2400–2406.
Sarkar, S.; Karan, N. S.; Pradhan, N. Ultrasmall color-tunable copper-doped ternary semiconductor nanocrystal emitters. Angew. Chem. Int. Ed. 2011, 50, 6065–6069.
Rice, W. D.; McDaniel, H.; Klimov, V. I.; Crooker, S. A. Magneto-optical properties of CuInS2 nanocrystals. J. Phys. Chem. Lett. 2014, 5, 4105–4109.