AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Magnetic control: Switchable ultrahigh magnetic gradients at Fe3O4 nanoparticles to enhance solution-phase mass transport

Kamonwad NgamchueaKristina Tschulik( )Richard G. Compton( )
Department of ChemistryPhysical & Theoretical Chemistry LaboratoryUniversity of Oxford, South Parks Road, OxfordOX1 3QZUK
Show Author Information

Graphical Abstract

Abstract

Enhancing mass transport to electrodes is desired in almost all types of electrochemical sensing, electrocatalysis, and energy storage or conversion. Here, a method of doing so by means of the magnetic gradient force generated at magnetic-nanoparticle-modified electrodes is presented. It is shown using Fe3O4-nanoparticle-modified electrodes that the ultrahigh magnetic gradients (> 108 T·m–1) established at the magnetized Fe3O4 nanoparticles speed up the transport of reactants and products at the electrode surface. Using the Fe(Ⅲ)/Fe(Ⅱ)-hexacyanoferrate redox couple, it is demonstrated that this mass transport enhancement can conveniently and repeatedly be switched on and off by applying and removing an external magnetic field, owing to the superparamagnetic properties of magnetite nanoparticles. Thus, it is shown for the first time that magnetic nanoparticles can be used to control mass transport in electrochemical systems. Importantly, this approach does not require any means of mechanical agitation and is therefore particularly interesting for application in micro- and nanofluidic systems and devices.

Electronic Supplementary Material

Download File(s)
nr-8-10-3293_ESM.pdf (1.9 MB)

References

1

Munir A.; Wang J. L.; Li Z. H.; Zhou H. S. Numerical analysis of a magnetic nanoparticle-enhanced microfluidic surface-based bioassay. Microfluid. Nanofluid. 2010, 8, 641–652.

2

Yu S. J.; Wei Q.; Du B.; Wu D.; Li H.; Yan L. G.; Ma H. M.; Zhang Y. Label-free immunosensor for the detection of kanamycin using Ag@Fe3O4 nanoparticles and thionine mixed graphene sheet. Biosens. bioelectron. 2013, 48, 224–229.

3

Bagheri H.; Afkhami A.; Hashemi P.; Ghanei M. Simultaneous and sensitive determination of melatonin and dopamine with Fe3O4 nanoparticle-decorated reduced graphene oxide modified electrode. RSC Adv. 2015, 5, 21659–21669.

4

Li F. Y.; Jiang L. P.; Han J.; Liu Q.; Dong Y. H.; Li Y. Y.; Wei Q. A label-free amperometric immunosensor for the detection of carcinoembryonic antigen based on novel magnetic carbon and gold nanocomposites. Rsc Adv. 2015, 5, 19961–19969.

5

Corot C.; Robert P.; Idee J. M.; Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Delivery Rev. 2006, 58, 1471–1504.

6

He C. N.; Wu S.; Zhao N. Q.; Shi C. S.; Liu E. Z.; Li J. J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 2013, 7, 4459–4469.

7

Zeng G. B.; Shi N.; Hess M.; Chen X.; Cheng W.; Fan T. X.; Niederberger M. A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries. ACS Nano 2015, 9, 4227–4235.

8

Johnson D. C.; Weber S. G.; Bond A. M.; Wightman R. M.; Shoup R. E.; Krull I. S. Electroanalytical voltammetry in flowing solutions. Anal. Chim. Acta 1986, 180, 187–250.

9

Deng H. T.; Van Berkel G. J. A thin-layer electrochemical flow cell coupled on-line with electrospray-mass spectrometry for the study of biological redox reactions. Electroanalysis 1999, 11, 857–865.

10

Compton R. G.; Unwin P. R. Channel and tubular electrodes. J. Electroanal. Chem. 1986, 205, 1–20.

11

Stamenkovic V. R.; Fowler B.; Mun B. S.; Wang G. F.; Ross P. N.; Lucas C. A.; Markovic N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

12

Mayrhofer K. J. J.; Strmcnik D.; Blizanac B. B.; Stamenkovic V.; Arenz M.; Markovic N. M. Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 2008, 53, 3181–3188.

13

Marken F.; Akkermans R. P.; Compton R. G. Voltammetry in the presence of ultrasound: The limit of acoustic streaming induced diffusion layer thinning and the effect of solvent viscosity. J. Electroanal. Chem. 1996, 415, 55–63.

14

Compton R. G.; Eklund J. C.; Page S. D.; Mason T. J.; Walton D. J. Voltammetry in the presence of ultrasound: Mass transport effects. J. Appl. Electrochem. 1996, 26, 775–784.

15

Chaure N. B.; Coey J. M. D. Enhanced oxygen reduction at composite electrodes producing a large magnetic gradient. J. Electrochem. Soc. 2009, 156, F39–F46.

16

Weston M. C.; Gerner M. D.; Fritsch I. Magnetic fields for fluid motion. Anal. Chem. 2010, 82, 3411–3418.

17

Tschulik K.; Cierpka C.; Gebert A.; Schultz L.; Kahler C. J.; Uhlemann M. In situ analysis of three-dimensional electrolyte convection evolving during the electrodeposition of copper in magnetic gradient fields. Anal. Chem. 2011, 83, 3275–3281.

18

Sahore V.; Fritsch I. Redox-magnetohydrodynamics, flat flow profile-guided enzyme assay detection: Toward multiple, parallel analyses. Anal. Chem. 2014, 86, 9405–9411.

19

Koza J. A.; Mühlenhoff, S.; Uhlemann M.; Eckert K.; Gebert A.; Schultz L. Desorption of hydrogen from an electrode surface under influence of an external magnetic field—In-situ microscopic observations. Electrochem. Commun. 2009, 11, 425–429.

20

Leventis N.; Gao X. R. Magnetohydrodynamic electrochemistry in the field of Nd-Fe-B magnets. Theory experiment, and application in self-powered flow delivery systems. Anal. Chem. 2001, 73, 3981–3992.

21

Fahidy T. Z. Magnetoelectrolysis. J. Appl. Electrochem. 1983, 13, 553–563.

22

Ragsdale S. R.; Grant K. M.; White H. S. Electrochemically generated magnetic forces. Enhanced transport of a paramagnetic redox species in large, nonuniform magnetic fields. J. Am. Chem. Soc. 1998, 120, 13461–13468.

23

Mutschke G.; Tschulik K.; Weier T.; Uhlemann M.; Bund A.; Fröhlich, J. On the action of magnetic gradient forces in micro-structured copper deposition. Electrochim. Acta 2010, 55, 9060–9066.

24

Mutschke G.; Tschulik K.; Uhlemann M.; Bund A.; Fröhlich, J. Comment on "magnetic structuring of electrodeposits". Phys. Rev. Lett. 2012, 109, 229401.

25

Konig J.; Tschulik K.; Buttner L.; Uhlemann M.; Czarske J. Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields. Anal. Chem. 2013, 85, 3087–3094.

26

Monzon L. M. A.; Coey J. M. D. Magnetic fields in electrochemistry: The Kelvin force. A mini-review. Electrochem. Commun. 2014, 42, 42–45.

27

Monzon L. M. A.; Coey J. M. D. Magnetic fields in electrochemistry: The Lorentz force. A mini-review. Electrochem. Commun. 2014, 42, 38–41.

28

Wang L. B.; Wakayama N. I.; Okada T. Numerical simulation of enhancement of mass transfer in the cathode electrode of a PEM fuel cell by magnet particles deposited in the cathode-side catalyst layer. Chem. Eng. Sci. 2005, 60, 4453–4467.

29

Coey J. M. D.; Rhen F. M. F.; Dunne P.; McMurry S. The magnetic concentration gradient force—Is it real? J. Solid State Electrochem. 2007, 11, 711–717.

30

Tschulik K.; Sueptitz R.; Uhlemann M.; Schultz L.; Gebert A. Electrodeposition of separated 3D metallic structures by pulse-reverse plating in magnetic gradient fields. Electrochim. Acta 2011, 56, 5174–5177.

31

Dunne P.; Mazza L.; Coey J. M. D. Magnetic structuring of electrodeposits. Phys. Rev. Lett. 2011, 107, 024501.

32

Caruntu D.; Caruntu G.; O' Connor C. J. Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from nonaqueous homogeneous solutions of polyols. J. Phys. D: Appl. Phys. 2007, 40, 5801–5809.

33

Della Pina C.; Falletta E.; Ferretti A. M.; Ponti A.; Gentili G. G.; Verri V.; Nesti R. Microwave characterization of magnetically hard and soft ferrite nanoparticles in K-band. J. Appl. Phys. 2014, 116, 154306.

34

Wan Y.; Guo Z. R.; Jiang X. L.; Fang K.; Lu X.; Zhang Y.; Gu N. Quasi-spherical silver nanoparticles: Aqueous synthesis and size control by the seed-mediated Lee-Meisel method. J. colloid interface sci. 2013, 394, 263–268.

35

Lyon J. L.; Fleming D. A.; Stone M. B.; Schiffer P.; Williams M. E. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett. 2004, 4, 719–723.

36

Tschulik K.; Ngamchuea K.; Ziegler C.; Beier M. G.; Damm C.; Eychmueller A.; Compton R. G. Core–shell nanoparticles: Characterizing multifunctional materials beyond imaging—distinguishing and quantifying perfect and broken shells. Adv. Funct. Mat. 2015, 25, 5149–5158.

37

Kozhina G. A.; Ermakov A. N.; Fetisov V. B.; Fetisov A. V. Anomalous currents under cyclic polarization of magnetite electrode in acidic medium. Russ. J. Electrochem. 2012, 48, 532–537.

38

Pumera M.; Aldavert M.; Mills C.; Merkoçi, A.; Alegret S. Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode. Electrochim. Acta 2005, 50, 3702–3707.

39

Teo W. Z.; Pumera M. Direct voltammetric determination of redox-active iron in carbon nanotubes. Chemphyschem 2014, 15, 3819–3823.

40

Amatore C.; Pebay C.; Thouin L.; Wang A. F.; Warkocz J. S. Difference between ultramicroelectrodes and microelectrodes: Influence of natural convection. Anal. Chem. 2010, 82, 6933–6939.

41

Amatore C.; Klymenko O. V.; Svir I. Importance of correct prediction of initial concentrations in voltammetric scans: Contrasting roles of thermodynamics, kinetics, and natural convection. Anal. Chem. 2012, 84, 2792–2798.

42

Tschulik K.; Haddou B.; Omanovic D.; Rees N. V.; Compton R. G. Coulometric sizing of nanoparticles: Cathodic and anodic impact experiments open two independent routes to electrochemical sizing of Fe3O4 nanoparticles. Nano Res. 2013, 6, 836–841.

43

Zhou Y. G.; Rees N. V.; Pillay J.; Tshikhudo R.; Vilakazi S.; Compton R. G. Gold nanoparticles show electroactivity: Counting and sorting nanoparticles upon impact with electrodes. Chem. Commun. 2012, 48, 224–226.

44

Brainina K. Z.; Galperin L. G.; Kiryuhina T. Y.; Galperin A. L.; Stozhko N. Y.; Murzakaev A. M.; Timoshenkova O. R. Silver nanoparticles electrooxidation: Theory and experiment. J. Solid State Electrochem. 2011, 16, 2365–2372.

45

Lu Z. Y.; Muir D. M. A comparative-study of the oxidative and reductive dissolution of magnetite in acidified CuSO4-acetonitrile-H2O and CuCl2-NaCl-H2O leach solutions. J. Appl. Electrochem. 1986, 16, 745–756.

46

Bund A.; Koehler S.; Kuehnlein H. H.; Plieth W. Magnetic field effects in electrochemical reactions. Electrochim. Acta 2003, 49, 147–152.

47

Takahashi F.; Sakai Y.; Tamura T. The Mhd effect and its relaxation process on electric-current in the electrolysis of ferricyanide reduction and ferrocyanide oxidation. Electrochim. Acta 1983, 28, 1147–1151.

48

Mutschke G.; Hess A.; Bund A.; Fröhlich, J. On the origin of horizontal counter-rotating electrolyte flow during copper magnetoelectrolysis. Electrochim. Acta 2010, 55, 1543–1547.

49

Pullins M. D.; Grant K. M.; White H. S. Microscale confinement of paramagnetic molecules in magnetic field gradients surrounding ferromagnetic microelectrodes. J. Phys. Chem. B 2001, 105, 8989–8994.

50

Tschulik K.; Sueptitz R.; Koza J.; Uhlemann M.; Mutschke G.; Weier T.; Gebert A.; Schultz L. Studies on the patterning effect of copper deposits in magnetic gradient fields. Electrochim. Acta 2010, 56, 297–304.

51

Wang X. P.; Zhao J. J.; Hu Y. P.; Li L.; Wang C. Effects of the Lorentz force and the gradient magnetic force on the anodic dissolution of nickel in HNO3+NaCl solution. Electrochim. Acta 2014, 117, 113–119.

52

Yang X. G.; Tschulik K.; Uhlemann M.; Odenbach S.; Eckert K. Enrichment of paramagnetic ions from homogeneous solutions in inhomogeneous magnetic fields. J. Phys. Chem. Lett. 2012, 3, 3559–3564.

53

Gorobets O. Y.; Gorobets V. Y.; Derecha D. O.; Brukva O. M. Nickel electrodeposition under influence of constant homogeneous and high-gradient magnetic field. J. Phys. Chem. C 2008, 112, 3373–3375.

54

Tschulik K.; Koza J. A.; Uhlemann M.; Gebert A.; Schultz L. Effects of well-defined magnetic field gradients on the electrodeposition of copper and bismuth. Electrochem. Commun. 2009, 11, 2241–2244.

55

Mutschke G.; Bund A. On the 3D character of the magnetohydrodynamic effect during metal electrodeposition in cuboid cells. Electrochem. Commun. 2008, 10, 597–601.

56

Rákoš, M.; Varga Z. Magnetic properties of two complex ferric paramagnetics. Czech. J. Phys. 1965, 15, 241–250.

57

Kodama R. H. Magnetic nanoparticles. J. Magn. Magn. Mater. 1999, 200, 359–372.

Nano Research
Pages 3293-3306
Cite this article:
Ngamchuea K, Tschulik K, Compton RG. Magnetic control: Switchable ultrahigh magnetic gradients at Fe3O4 nanoparticles to enhance solution-phase mass transport. Nano Research, 2015, 8(10): 3293-3306. https://doi.org/10.1007/s12274-015-0830-y

766

Views

29

Crossref

N/A

Web of Science

27

Scopus

1

CSCD

Altmetrics

Received: 01 May 2015
Revised: 26 May 2015
Accepted: 06 June 2015
Published: 08 September 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return