AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Biomimetic gold nanocomplexes for gene knockdown: Will gold deliver dividends for small interfering RNA nanomedicines?

Jianfeng Guo1Kamil Rahme2,3,4Kathleen A. Fitzgerald1Justin D. Holmes3,4Caitriona M. O'Driscoll1( )
Pharmacodelivery GroupSchool of PharmacyUniversity College CorkCorkIreland
Department of SciencesFaculty of Natural and Applied ScienceNotre Dame University (Louaize)Zouk Mosbeh1200Lebanon
Materials Chemistry and Analysis GroupDepartment of Chemistry and the Tyndall National InstituteUniversity College CorkCorkIreland
Advanced Materials and BioEngineering Research (AMBER)Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)Trinity College DublinDublin2Ireland
Show Author Information

Graphical Abstract

Abstract

RNA interference (RNAi) effectors such as small interfering RNA (siRNA) and micro RNA (miRNA) can selectively downregulate any gene implicated in the pathology of a disease. Therefore, RNAi-based therapies have immense potential for the treatment of a wide range of diseases. However, pharmacokinetic and pharmacodynamic studies have revealed that these therapeutic agents have poor bioactivity due to a number of factors, including insufficient plasma drug levels, short plasma half-lives, renal clearance, and hepatic metabolism. Non-viral delivery may facilitate the clinical application of siRNA-based therapeutics by helping to overcome these barriers. Recently, the potential of gold nanoparticles (AuNPs) as multifunctional carriers for transporting drugs, proteins, and genetic materials has been demonstrated. In this review, some of the key properties of AuNPs relevant to siRNA delivery, such as physical properties and surface chemistry have been described. In addition, the ability of AuNP-based formulation strategies to successfully overcome delivery barriers associated with siRNA, and the potential for this material to translate into safe and effective nanomedicines are critically discussed.

References

1

Kanasty, R.; Dorkin, J. R.; Vegas, A.; Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 2013, 12, 967–977.

2

Guo, J.; Bourre, L.; Soden, D. M.; O'Sullivan, G. C.; O'Driscoll, C. Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics? Biotechnol. Adv. 2011, 29, 402–417.

3

Mohseni, M.; Sun, J.; Lau, A.; Curtis, S.; Goldsmith, J.; Fox, V. L.; Wei, C.; Frazier, M.; Samson, O.; Wong, K. K.; Kim, C.; Camargo, F. D. A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat. Cell Biol. 2014, 16, 108–117.

4

Schramek, D.; Sendoel, A.; Segal, J. P.; Beronja, S.; Heller, E.; Oristian, D.; Reva, B.; Fuchs, E. Direct in vivo RNAi screen unveils myosin Ⅱa as a tumor suppressor of squamous cell carcinomas. Science 2014, 343, 309–313.

5

Guo, J. F.; Cahill, M. R.; McKenna, S. L.; O'Driscoll, C. M. Biomimetic nanoparticles for siRNA delivery in the treatment of leukaemia. Biotechnol. Adv. 2014, 32, 1396–1409.

6

Strumberg, D.; Schultheis, B.; Traugott, U.; Vank, C.; Santel, A.; Keil, O.; Giese, K.; Kaufmann, J.; Drevs, J. Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors. Int. J. Clin. Pharmacol. Ther. 2012, 50, 76–78.

7

Tabernero, J.; Shapiro, G. I.; LoRusso, P. M.; Cervantes, A.; Schwartz, G. K.; Weiss, G. J.; Paz-Ares, L.; Cho, D. C.; Infante, J. R.; Alsina, M. et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013, 3, 406–417.

8

Williford, J. M.; Wu, J.; Ren, Y.; Archang, M. M.; Leong, K. W.; Mao, H. Q. Recent advances in nanoparticle-mediated siRNA delivery. Annu. Rev. Biomed. Eng. 2014, 16, 347–370.

9

Giacca, M.; Zacchigna, S. Virus-mediated gene delivery for human gene therapy. J. Control. Release 2012, 161, 377–388.

10

Waehler, R.; Russell, S. J.; Curiel, D. T. Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet. 2007, 8, 573–587.

11

Ginn, S. L.; Alexander, I. E.; Edelstein, M. L.; Abedi, M. R.; Wixon, J. Gene therapy clinical trials worldwide to 2012-an update. J. Gene. Med. 2013, 15, 65–77.

12

Cobley, C. M.; Chen, J.; Cho, E. C.; Wang, L. V.; Xia, Y. Gold nanostructures: A class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 2011, 40, 44–56.

13

Wen, S.; Li, K.; Cai, H.; Chen, Q.; Shen, M.; Huang, Y.; Peng, C.; Hou, W.; Zhu, M.; Zhang, G. et al. Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials 2013, 34, 1570–1580.

14

Barhate, G.; Gautam, M.; Gairola, S.; Jadhav, S.; Pokharkar, V. Quillaja saponaria extract as mucosal adjuvant with chitosan functionalized gold nanoparticles for mucosal vaccine delivery: Stability and immunoefficiency studies. Int. J. Pharm. 2013, 441, 636–642.

15

Okuno, T.; Kato, S.; Hatakeyama, Y.; Okajima, J.; Maruyama, S.; Sakamoto, M.; Mori, S.; Kodama, T. Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light. J. Control. Release 2013, 172, 879–884.

16

Jing, L.; Liang, X.; Deng, Z.; Feng, S.; Li, X.; Huang, M.; Li, C.; Dai, Z. Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 2014, 35, 5814–5821.

17

Huang, P.; Pandoli, O.; Wang, X. S.; Wang, Z.; Li, Z. M.; Zhang, C. L.; Chen, F.; Lin, J.; Cui, D. X.; Chen, X. Y. Chiral guanosine 5'-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy. Nano Res. 2012, 5, 630–639.

18

Kim, D. W.; Kim, J. H.; Park, M.; Yeom, J. H.; Go, H.; Kim, S.; Han, M. S.; Lee, K.; Bae, J. Modulation of biological processes in the nucleus by delivery of DNA oligonucleotides conjugated with gold nanoparticles. Biomaterials 2011, 32, 2593–2604.

19

Bao, Q. Y.; Geng, D. D.; Xue, J. W.; Zhou, G.; Gu, S. Y.; Ding, Y.; Zhang, C. Glutathione-mediated drug release from Tiopronin-conjugated gold nanoparticles for acute liver injury therapy. Int. J. Pharm. 2013, 446, 112–118.

20

Ding, Y.; Zhou, Y. Y.; Chen, H.; Geng, D. D.; Wu, D. Y.; Hong, J.; Shen, W. B.; Hang, T. J.; Zhang, C. The performance of thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles. Biomaterials 2013, 34, 10217–10227.

21

Monem, A. S.; Elbialy, N.; Mohamed, N. Mesoporous silica coated gold nanorods loaded doxorubicin for combined chemo-photothermal therapy. Int. J. Pharm. 2014, 470, 1–7.

22

Bao, C.; Conde, J.; Polo, E.; del Pino, P.; Moros, M.; Baptista, P. V.; Grazu, V.; Cui, D.; de la Fuente, J. M. A promising road with challenges: Where are gold nanoparticles in translational research? Nanomedicine (Lond) 2014, 9, 2353–2570.

23

Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

24

Link, S.; EI-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217.

25

Sperling, R. A.; Rivera Gil, P.; Zhang, F.; Zanella, M.; Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1896–1908.

26

Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2007, 2, 681–693.

27

Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.

28

Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.

29

Orendorff, C. J.; Sau, T. K.; Murphy, C. J. Shape-dependent plasmon-resonant gold nanoparticles. Small 2006, 2, 636–639.

30

Rahme, K.; Gauffre, F.; Marty, J. D.; Payre, B.; Mingotaud, C. A systematic study of the stabilization in water of gold nanoparticles by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers. J. Phys. Chem. C 2007, 111, 7273–7279.

31

Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

32

Niu, J.; Zhu, T.; Liu, Z. One-step seed-mediated growth of 30–150 nm quasispherical gold nanoparticles with 2-mercaptosuccinic acid as a new reducing agent. Nanotechnology 2007, 18, 325607.

33

Perrault, S. D.; Chan, W. C. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J. Am. Chem. Soc. 2009, 131, 17042–17043.

34

Huang, Y.; Kim, D. H. Synthesis and self-assembly of highly monodispersed quasispherical gold nanoparticles. Langmuir 2011, 27, 13861–13867.

35

Rahme, K.; Chen, L.; Hobbs, R. G.; Morris, M. A.; O'Driscoll, C.; Holmes, J. D. PEGylated gold nanoparticles: Polymer quantification as a function of PEG lengths and nanoparticle dimensions. RSC Adv. 2013, 3, 6085–6094.

36

Cai, W.; Gao, T.; Hong, H.; Sun, J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl. 2008, 2008, 17–32.

37

Li, C. Y.; Fan, F. R.; Yin, B. S.; Chen, L.; Ganguly, T.; Tian, Z. Q. Au+-cetyltrimethylammonium bromide solution: A novel precursor for seed-mediated growth of gold nanoparticles in aqueous solution. Nano Res. 2013, 6, 29–37.

38

Abdelhalim, M. A. K.; Mady, M. M.; Ghannam, M. M. Physical properties of different gold nanoparticles: Ultraviolet-visible and fluorescence measurements. J. Nanomed. Nanotechnol. 2012, 3, 1000133.

39

Eustis, S.; EI-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217.

40

Hohenau, A.; Krenn, J. R.; Schider, G.; Ditlbacher, H.; Leitner, A.; Aussenegg, F. R.; Schaich, W. L. Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles. Europhys. Lett. 2005, 69, 538–543.

41

Link, S.; EI-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426.

42

Sau, T. K.; Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 2004, 126, 8648–8649.

43

Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Synthesis and optical properties of "branched" gold nanocrystals. Nano Lett. 2004, 4, 327–330.

44

Murphy, C. J.; Gole, A. M.; Hunyadi, S. E.; Orendorff, C. J. One-dimensional colloidal gold and silver nanostructures. Inorg. Chem. 2006, 45, 7544–7554.

45

Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coordin. Chem. Rev. 2005, 249, 1870–1901.

46

Jiang, X. C.; Brioude, A.; Pileni, M. P. Gold nanorods: Limitations on their synthesis and optical properties. Colloid Surf. A-Physicochem. Eng. Asp. 2006, 277, 201-2–06.

47

Link, S.; Mohamed, M. B.; EI-Sayed, M. A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 1999, 103, 3073–3077.

48

Liang, Z.; Li, X.; Xie, Y.; Liu, S. 'Smart'gold nanoshells for combined cancer chemotherapy and hyperthermia. Biomed. Mater. 2014, 9, 025012.

49

Xia, Y.; Li, W.; Cobley, C. M.; Chen, J.; Xia, X.; Zhang, Q.; Yang, M.; Cho, E. C.; Brown, P. K. Gold nanocages: From synthesis to theranostic applications. Acc. Chem. Res. 2011, 44, 914–924.

50

Dreaden, E. C.; Mackey, M. A.; Huang, X.; Kang, B.; EI-Sayed, M. A. Beating cancer in multiple ways using nanogold. Chem. Soc. Rev. 2011, 40, 3391–3404.

51

Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325–337.

52

Goettmann, F.; Moores, A.; Boissiere, C.; Le Floch, P.; Sanchez, C. A selective chemical sensor based on the plasmonic response of phosphinine‐stabilized gold nanoparticles hosted on periodically organized mesoporous silica thin layers. Small 2005, 1, 636–639.

53

Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Synthesis of nanosized gold-silica core-shell particles. Langmuir 1996, 12, 4329–4335.

54

Underwood, S.; Mulvaney, P. Effect of the solution refractive index on the color of gold colloids. Langmuir 1994, 10, 3427–3430.

55

Ung, T.; Liz-Marzan, L. M.; Mulvaney, P. Optical properties of thin films of Au@SiO2 particles. J. Phys. Chem. B 2001, 105, 3441–3452.

56

Maye, M. M.; Lim, I. I.; Luo, J.; Rab, Z.; Rabinovich, D.; Liu, T.; Zhong, C. J. Mediator-template assembly of nanoparticles. J. Am. Chem. Soc. 2005, 127, 1519–1529.

57

Kumar, A.; Zhang, X.; Liang, X. J. Gold nanoparticles: Emerging paradigm for targeted drug delivery system. Biotechnol. Adv. 2013, 31, 593–606.

58

Rana, S.; Bajaj, A.; Mout, R.; Rotello, V. M. Monolayer coated gold nanoparticles for delivery applications. Adv. Drug Deliv. Rev. 2012, 64, 200–216.

59

Kumar, D.; Saini, N.; Jain, N.; Sareen, R.; Pandit, V. Gold nanoparticles: An era in bionanotechnology. Expert Opin. Drug Deliv. 2013, 10, 397–409.

60

Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phy. Sci. 1973, 241, 20–22.

61

Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75.

62

Dumur, F.; Guerlin, A.; Dumas, E.; Bertin, D.; Gigmes, D.; Mayer, C. R. Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents. Gold Bull. 2011, 44, 119–137.

63

Katti, K.; Chanda, N.; Shukla, R.; Zambre, A.; Suibramanian, T.; Kulkarni, R. R.; Kannan, R.; Katti, K. V. Green nanotechnology from cumin phytochemicals: Generation of biocompatible gold nanoparticles. Int. J. Green Nanotechol. Biomed. 2009, 1, B39–B52.

64

Ganeshkumar, M.; Ponrasu, T.; Raja, M. D.; Subamekala, M. K.; Suguna, L. Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 130, 64–71.

65

Iram. Y.; Igbal, M. S.; Athar, M. M.; Saeed, M. Z.; Yasmeen, A.; Ahmad, R. Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study. Carbohydr. Polym. 2014, 104, 29–33.

66

Menon, D.; Basanth, A.; Retnakumari, A.; Manzoor, K.; Nair, S. V. Green synthesis of biocompatible gold nanocrystals with tunable surface plasmon resonance using garlic phytochemicals. J. Biomed. Nanotechnol. 2012, 8, 901–911.

67

Mohan Kumar, K.; Mandal, B. K.; Kiran Kumar, H. A.; Maddinedi, S. B. Green synthesis of size controllable gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 116, 539–545.

68

Correa-Llanten, D. N.; Muñoz-Ibacache, S. A.; Castro, M. E.; Munoz, P. A.; Blamey, J. M. Gold nanoparticles synthesized by geobacillus sp strain ID17 a thermophilic bacterium isolated from deception island, antarctica. Microb. Cell Fact. 2013, 12, 75.

69

Mittal, A. K.; Chisti, Y.; Banerjee, U. C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013, 31, 346–356.

70

Rahme, K.; Nolan, M. T.; Doody, T.; McGlacken, G. P.; Morris, M. A.; O'Driscoll, C.; Holmes, J. D. Highly stable PEGylated gold nanoparticles in water: Applications in biology and catalysis. RSC Adv. 2013, 3, 21016–21024.

71

Guo, J.; Armstrong, M. J.; O'Driscoll, C. M.; Holmes, J. D.; Rahme, K. Positively charged, surfactant-free gold nanoparticles for nucleic acid delivery. RSC Adv. 2015, 5, 17862–17871.

72

Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. 1994, 801–802.

73

Sardar, R.; Funston, A. M.; Mulvaney, P.; Murray, R. W. Gold nanoparticles: Past, present, and future. Langmuir 2009, 25, 13840–13851.

74

Lu, W.; Huang, Q.; Ku, G.; Wen, X.; Zhou, M.; Guzatov, D.; Brecht, P.; Su, R.; Oraevsky, A.; Wang, L.V. et al. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 2010, 31, 2617–2626.

75

Kim, D.; Jeong, Y. Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 2010, 4, 3689–3696.

76

Jain, N. K.; Nahar, M. PEGylated nanocarriers for systemic delivery. In Cancer Nanotechnology: Methods and Protocols; Grobmyer, S. R.; Moudgil, B. M., Eds.; Springer: New York, 2010; pp 221–234.

77

Amoozgar, Z.; Yeo, Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 4, 219–233.

78

Santos-Martinez, M. J.; Rahme, K.; Corbalan, J. J.; Faulkner, C.; Holmes, J. D.; Tajber, L.; Medina, C.; Radomski, M. W. Pegylation increases platelet biocompatibility of gold nanoparticles. J. Biomed. Nanotechnol. 2014, 10, 1004–1015.

79

Pooja, D.; Panyaram, S.; Kulhari, H.; Rachamalla, S. S.; Sistla, R. Xanthan gum stabilized gold nanoparticles: Characterization, biocompatibility, stability and cytotoxicity. Carbohydr. Polym. 2014, 110, 1–9.

80

Latorre, A.; Posch, C.; Garcimartín, Y.; Celli, A.; Sanlorenzo, M.; Vujic, I.; Ma, J.; Zekhtser, M.; Rappersberger, K.; Ortiz-Urda, S. et al. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics. Nanoscale 2014, 6, 7436–7442.

81

Imperatore, R.; Carotenuto, G.; Di Grazia, M. A.; Ferrandino, I.; Palomba, L.; Mariotti, R.; Vitale, E.; De Nicola, S.; Longo, A.; Cristino, L. Imidazole-stabilized gold nanoparticles induce neuronal apoptosis: An in vitro and in vivo study. J. Biomed. Mater. Res. A 2015, 103, 1436–1446.

82

Hinterwirth, H.; Lindner, W.; Lammerhofer, M. Bioconjugation of trypsin onto gold nanoparticles: Effect of surface chemistry on bioactivity. Anal. Chim. Acta 2012, 733, 90–97.

83

Tao, W.; Ziemer, K. S.; Gill, H. S. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine (Lond) 2014, 9, 237–251.

84

Ling, D.; Hackett, M. J.; Hyeon, T. Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today 2014, 9, 457–477.

85

Zhang, Z.; Jia, J.; Lai, Y.; Ma, Y.; Weng, J.; Sun, L. Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells. Bioorg. Med. Chem. 2010, 18, 5528–5534.

86

Choi, C. H.; Alabi, C. A.; Webster, P.; Davis, M. E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. USA 2010, 107, 1235–1240.

87

Prades, R.; Guerrero, S.; Araya, E.; Molina, C.; Salas, E.; Zurita, E.; Selva, J.; Egea, G.; Lopez-Iglesias, C.; Teixido, M. et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 2012, 33, 7194–7205.

88

Chang, Y. C.; Yang, C. Y.; Sun, R. L.; Cheng, Y. F.; Kao, W. C.; Yang, P. C. Rapid single cell detection of staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci. Rep. 2013, 3, 1863.

89

Kumar, S.; Aaron, J.; Sokolov, K. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat. Protoc. 2008, 3, 314–420.

90

Shiao, Y. S.; Chiu, H. H.; Wu, P. H.; Huang, Y. F. Aptamer-functionalized gold nanoparticles as photoresponsive nanoplatform for co-drug delivery. ACS Appl. Matyer. Interfaces 2014, 6, 21832–21841.

91

Arosio, D.; Chiodo, F.; Reina, J. J.; Marelli, M.; Penades, S.; van Kooyk, Y.; Garcia-Vallejo, J. J.; Bernardi, A. Effective targeting of DC-SIGN by α-fucosylamide functionalized gold nanoparticles. Bioconjug. Chem. 2014, 25, 2244–2251.

92

Choi, H. S.; Liu, W.; Liu, F.; Nasr, K.; Misra, P.; Bawendi, M. G.; Frangioni, J. V. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 2010, 5, 42–47.

93

Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K.; Han, M. S.; Mirkin, C. A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312, 1027–1030.

94

Conde, J.; Larguinho, M.; Cordeiro, A.; Raposo, L. R.; Costa, P. M.; Santos, S.; Diniz, M. S.; Fernandes, A. R.; Baptista, P. V. Gold-nanobeacons for gene therapy: Evaluation of genotoxicity, cell toxicity and proteome profiling analysis. Nanotoxicology 2014, 8, 521–532.

95

Kim, J. H.; Yeom, J. H.; Ko, J. J.; Han, M. S.; Lee, K.; Na, S. Y.; Bae, J. Effective delivery of anti-miRNA DNA oligonucleotides by functionalized gold nanoparticles. J. Biotechnol. 2011, 155, 287–292.

96

Crew, E.; Tessel, M. A.; Rahman, S.; Razzak-Jaffar, A.; Mott, D.; Kamundi, M.; Yu, G.; Tchah, N.; Lee, J.; Bellavia, M. et al. MicroRNA conjugated gold nanoparticles and cell transfection. Anal. Chem. 2012, 84, 26–29.

97

Hao, L.; Patel, P. C.; Alhasan, A. H.; Giljohann, D. A.; Mirkin, C. A. Nucleic acid-gold nanoparticle conjugates as mimics of microRNA. Small 2011, 7, 3158–3162.

98

Conde, J.; Rosa, J.; de la Fuente, J. M.; Baptisata, P. V. Gold-nanobeacons for simultaneous gene specific silencing and intracellular tracking of the silencing events. Biomaterials 2013, 34, 2516–2523.

99

Kong, W. H.; Bae, K. H.; Hong, C. A.; Lee, Y.; Hahn, S. K.; Park, T. G. Multimerized siRNA cross-linked by gold nanoparticles. Bioconjug. Chem. 2011, 22, 1962–1969.

100

Giljohann, D. A.; Seferos, D. S.; Prigodich, A. E.; Patel, P. C.; Mirkin, C. A. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J. Am. Chem. Soc. 2009, 131, 2072–2073.

101

Lee, J. S.; Green, J. J.; Love, K. T.; Sunshine, J.; Langer, R.; Anderson, D. G. Gold, poly(beta-amino ester) nanoparticles for small interfering RNA delivery. Nano Lett. 2009, 9, 2402–2406.

102

Patel, P. C.; Hao, L.; Yeung, W. S.; Mirkin, C. A. Duplex end breathing determines serum stability and intracellular potency of siRNA-Au NPs. Mol. Pharm. 2011, 8, 1285–1291.

103

Son, S.; Nam, J.; Kim, J.; Kim, S.; Kim, W. J. i-motif-driven Au nanomachines in programmed siRNA delivery for gene-silencing and photothermal ablation. ACS Nano 2014, 8, 5574–5584.

104

Jensen, S. A.; Day, E. S.; Ko, C. H.; Hurley, L. A.; Luciano, J. P.; Kouri, F. M.; Merkel, T. J.; Luthi, A. J.; Patel, P. C.; Cutler, J. I. et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl. Med. 2013, 5, 209ra152.

105

Zheng, D.; Giljohann, D. A.; Chen, D. L.; Massich, M. D.; Wang, X. Q.; Iordanov, H.; Mirkin, C. A.; Paller, A. S. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc. Natl. Acad. Sci. USA 2012, 109, 11975–11980.

106

Conde, J.; Tian, F.; Hernandez, Y.; Bao, C.; Cui, D.; Janssen, K. P.; Ibarra, M. R. Baptista, P. V.; Stoeger, T.; de la Fuente, J. M. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials 2013, 34, 7744–7753.

107

Lu, W.; Zhang, G.; Zhang, R.; Flores, L. G. 2nd; Huang, Q.; Gelovani, J. G.; Li, C. Tumor site-specific silencing of NF-κB p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res. 2010, 70, 3177–3188.

108

Ghosh, R.; Singh, L. C.; Shohet, J. M.; Gunaratne, P. H. A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials 2013, 34, 807–816.

109

Song, W. J.; Du, J. Z.; Sun, T. M.; Zhang, P. Z.; Wang, J. Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery. Small 2010, 6, 239–246.

110

Huang, S.; Deshmukh, H.; Rajagopalan, K. K.; Wang, S. Gold nanoparticles electroporation enhanced polyplex delivery to mammalian cells. Electrophoresis 2014, 35, 1837–1845.

111

Lee, Y.; Lee, S. H.; Kim, J. S.; Maruyama, A.; Chen, X.; Park, T. G. Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery. J. Control. Release 2011, 155, 3–10.

112

Kong, W. H.; Bae, K. H.; Jo, S. D.; Kim, J. S.; Park, T. G. Cationic lipid-coated gold nanoparticles as efficient and non-cytotoxic intracellular siRNA delivery vehicles. Pharm. Res. 2012, 29, 362–374.

113

Lee, S. H.; Bae, K. H.; Kim, S. H.; Lee, K. R.; Park, T. G. Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int. J. Pharm. 2008, 364, 94–101.

114

Kim, S. T.; Chompoosor, A.; Yeh, Y. C.; Agasti, S. S.; Solfiell, D. J.; Rotello, V. M. Dendronized gold nanoparticles for siRNA delivery. Small 2012, 8, 3253–3256.

115

Mitra, M.; Kandalam, M.; Rangasamy, J.; Shankar, B.; Maheswari, U. K.; Swaminathan, S.; Krishnakumar, S. Novel epithelial cell adhesion molecule antibody conjugated polyethyleneimine-capped gold nanoparticles for enhanced and targeted small interfering RNA delivery to retinoblastoma cells. Mol. Vis. 2013, 19, 1029–1038.

116

Zhao, E.; Zhao, Z.; Wang, J.; Yang, C.; Chen, C.; Gao, L.; Feng, Q.; Hou, W.; Gao, M.; Zhang, Q. Surface engineering of gold nanoparticles for in vitro siRNA delivery. Nanoscale 2012, 4, 5102–5109.

117

Guo, S.; Huang, Y.; Jiang, Q.; Sun, Y.; Deng, L.; Liang, Z.; Du, Q.; Xing, J.; Zhao, Y.; Wang, P. C. Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 2010, 4, 5505–5511.

118

Lee, S. K.; Han, M. S.; Asokan, S.; Tung, C. H. Effective gene silencing by multilayered siRNA-coated gold nanoparticles. Small 2011, 7, 364–370.

119

Han, L.; Zhao, J.; Zhang, X.; Cao, W.; Hu, X.; Zou, G.; Duan, X.; Liang, X. J. Enhanced siRNA delivery and silencing gold–chitosan nanosystem with surface charge-reversal polymer assembly and good biocompatibility. ACS Nano 2012, 6, 7340–7351.

120

Elbakry, A.; Zaky, A.; Liebl, R.; Rachel, R.; Goepferich, A.; Breunig, M. Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett. 2009, 9, 2059–2064.

121

Bonoiu, A. C.; Mahajan, S. D.; Ding, H.; Roy, I.; Yong, K. T.; Kumar, R.; Hu, R.; Bergey, E. J.; Schwartz, S. A.; Prasad, P. N. Nanotechnology approach for drug addiction therapy: Gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc. Natl. Acad. Sci. USA 2009, 106, 5546–5550.

122

Bonoiu, A. C.; Bergey, E. J.; Ding, H.; Hu, R.; Kumar, R.; Yong, K. T.; Prasad, P. N.; Mahajan, S.; Picchione, K. E.; Bhattacharjee, A. et al. Gold nanorod-siRNA induces efficient in vivo gene silencing in the rat hippocampus. Nanomedicine (Lond) 2011, 6, 617–630.

123

Lee, M. Y.; Park, S. J.; Park, K.; Kim, K. S.; Lee, H.; Hahn, S. K. Target-specific gene silencing of layer-by-layer assembled gold-cysteamine/siRNA/PEI/HA nanocomplex. ACS Nano 2011, 5, 6138–6147.

124

Bishop, C. J.; Tzeng, S. Y.; Green, J. J. Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA. Acta Biomater. 2015, 11, 393–403.

125

Yan, Y.; Bjornmalm, M.; Caruso, F. Assembly of layer-by-layer particles and their interactions with biological systems. Chem. Mater. 2014, 26, 452–460.

126

Mintzer, M. A.; Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev. 2009, 109, 259–302.

127

Zhang, Y.; Wang, Z.; Gemeinhart, R. A. Progress in microRNA delivery. J. Control. Release 2013, 172, 962–974.

128

Guo, J.; Evans, J. C.; O'Driscoll, C. M. Delivering RNAi therapeutics with non-viral technology: A promising strategy for prostate cancer? Trends Mol. Med. 2013, 19, 250–261.

129

Wilson, R. C.; Doudna, J. A. Molecular mechanisms of RNA interference. Annu. Rev. Biophys. 2013, 42, 217–239.

130

Fellmann, C.; Lowe, S. W. Stable RNA interference rules for silencing. Nat. Cell Biol. 2014, 16, 10–18.

131

Guo, J.; Fisher, K. A.; Darcy, R.; Cryan, J. F.; O'Driscoll, C. Therapeutic targeting in the silent era: Advances in non-viral siRNA delivery. Mol. Biosyst. 2010, 6, 1143–1161.

132

Chan, E.; Prado, D. E.; Weidhaas, J. B. Cancer microRNAs: From subtype profiling to predictors of response to therapy. Trends Mol. Med. 2011, 17, 235–243.

133

Leal, J. A.; Feliciano, A.; Lleonart, M. E. Stem cell microRNAs in senescence and immortalization: Novel players in cancer therapy. Med. Res. Rev. 2013, 33, 112–138.

134

Momi, N.; Kaur, S.; Rachagani, S.; Ganti, A. K.; Batra, S. K. Smoking and microRNA dysregulation: A cancerous combination. Trends Mol. Med. 2014, 20, 36–47.

135

Haasnoot, J.; Westerhout, E. M.; Berkhout, B. RNA interference against viruses: Strike and counterstrike. Nat. Biotechnol. 2007, 25, 1435–1443.

136

Lu, P. Y.; Xie, F. Y.; Woodle, M. C. Modulation of angiogenesis with siRNA inhibitors for novel therapeutics. Trends Mol. Med. 2005, 11, 104–113.

137

Fitzgerald, K. A.; Evans, J. C.; McCarthy, J.; Guo, J.; Prenciple, M.; Kearney, M.; Watson, W. R.; O'Driscoll C. M. The role of transcription factors in prostate cancer and potential for future RNA interference therapy. Expert Opin. Ther. Thargets 2014, 18, 633–649.

138

Bennink, J. R.; Palmore, T. N. The promise of siRNAs for the treatment of influenza. Trends Mol. Med. 2004, 10, 571–574.

139

Whitehead, K. A.; Langer, R.; Anderson, D. G. Knocking down barriers: Advances in siRNA delivery. Nat. Rev. Drug Discov. 2009, 8, 129–138.

140

Cole, L. E.; Vargo-Gogola, T.; Roeder, R. K. Contrast-enhanced X-ray detection of breast microcalcifications in a murine model using targeted gold nanoparticles. ACS Nano 2014, 8, 7486–7496.

141

Chong, R. H.; Gonzalez-Gonzalez, E.; Lara, M. F.; Speaker, T. J.; Contag, C. H.; Kaspar, R. L.; Coulman, S. A.; Hargest, R.; Birchall, J. C. Gene silencing following siRNA delivery to skin via coated steel microneedles: In vitro and in vivo proof-of-concept. J. Control. Release 2013, 166, 211–219.

142

Burgess, A.; Hynynen, K. Noninvasive and targeted drug delivery to the brain using focused ultrasound. ACS Chem. Neurosci. 2013, 4, 519–526.

143

Wang, Y. H.; Chen, S. P.; Liao, A. H.; Yang, Y. C.; Lee, C. R; Wu, C. H.; Wu, P. C.; Liu, T. M.; Wang, C. R.; Li, P. C. Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy. Sci. Rep. 2014, 4, 5685.

144

Wegscheid, M. L.; Morshed, R. A.; Cheng, Y.; Lesniak, M. S. The art of attraction: Applications of multifunctional magnetic nanomaterials for malignant glioma. Expert Opin. Drug Deliv. 2014, 11, 957–975.

145

Hyodo, M.; Sakurai, Y.; Akita, H.; Harashima, H. "Programmed packaging" for gene delivery. J. Control. Release 2014, 193, 316–323.

146

Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Bombelli, F. B.; Dawson, K. A. Physical-chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525–2534.

147

Salvati, A.; Pitek, A. S.; Monopoli, M. P.; Prapainop, K.; Bombelli, F. B.; Hristov, D. R.; Kelly, P. M.; Aberg, C.; Mahon, E.; Dawson, K. A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 2013, 8, 137–143.

148

de Wolf, H. K.; Snel, C. J.; Verbaan, F. J.; Schiffelers, R. M.; Hennink, W. E.; Storm, G. Effect of cationic carriers on the pharmacokinetics and tumor localization of nucleic acids after intravenous administration. Int. J. Pharm. 2007, 331, 167–175.

149

Cao-Milan, R.; Liz-Marzan, L. M. Gold nanoparticle conjugates: Recent advances toward clinical applications. Expert Opin. Drug Deliv. 2014, 11, 741–752.

150

Iosin, M.; Toderas, F.; Baldeck, P. L.; Astilean, S. Study of protein-gold nanoparticle conjugates by fluorescence and surface-enhanced Raman scattering. J. Mol. Struct. 2009, 924926, 196–200.

151

Pan, B.; Cui, D.; Xu, P.; Li, Q.; Huang, T.; He, R.; Gao, F. Study on interaction between gold nanorod and bovine serum albumin. Colloid Surf. A-Physicochem. Eng. Asp. 2007, 295, 217–222.

152

Brewer, S. H.; Glomm, W. R.; Johnson, M. C.; Knag, M. K.; Franzen, S. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 2005, 21, 9303–9307.

153

Alkilany, A. M.; Thompson, L. B.; Boulos, S. P.; Sisco, P. N.; Murphy, C. J. Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev. 2012, 64, 190–199.

154

Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond) 2011, 6, 715–728.

155

Guo, J.; Ogier, J. R.; Desgranges, S.; Darcy, R.; O'Driscoll, C. Anisamide-targeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice. Biomaterials 2012, 33, 7775–7784.

156

Gao, J.; Chen, H.; Yu, Y.; Song, J.; Song, H.; Su, X.; Li, W.; Tong, X.; Qian, W.; Wang, H. et al. Inhibition of hepatocellular carcinoma growth using immunoliposomes for co-delivery of adriamycin and ribonucleotide reductase M2 siRNA. Biomaterials 2013, 34, 10084–10098.

157

Leus, N. G.; Morselt, H. W.; Zwiers, P. J.; Kowalski, P. S.; Ruiters, M. H.; Molema, G.; Kamps, J. A. VCAM-1 specific PEGylated SAINT-based lipoplexes deliver siRNA to activated endothelium in vivo but do not attenuate target gene expression. Int. J. Pharm. 2014, 469, 121–131.

158

Koide, H.; Asai, T.; Hatanaka, K.; Akai, S.; Ishii, T.; Kenjo, E.; Ishida, T.; Kiwada, H.; Tsukada, H.; Oku, N. T cell-independent B cell response is responsible for ABC phenomenon induced by repeated injection of PEGylated liposomes. Int. J. Pharm. 2010, 392, 218–223.

159

Schellekens, H.; Hennink, W. E.; Brinks, V. The immunogenicity of polyethylene glycol: Facts and fiction. Pharm. Res. 2013, 30, 1729–1734.

160

He, Z.; Liu, J.; Du, L. The unexpected effect of PEGylated gold nanoparticles on the primary function of erythrocytes. Nanoscale 2014, 6, 9017–9024.

161

Moghimi, S. M.; Hunter, A. C.; Andresen, T. L. Factors controlling nanoparticle pharmacokinetics: An integrated analysis and perspective. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 481–503.

162

Quail, D. F.; Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437.

163

Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668.

164

Suresh, D.; Zambre, A.; Chanda, N.; Hoffman, T. J.; Smith, C. J.; Robertson, J. D.; Kannan, R. Bombesin peptide conjugated gold nanocages internalize via clathrin mediated endocytosis. Bioconjug. Chem. 2014, 25, 1565–1579.

165

Junttila, M. R.; de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013, 501, 346–354.

166

Egeblad, M.; Nakasone, E. S.; Werb, Z. Tumors as organs: Complex tissues that interface with the entire organism. Dev. Cell 2010, 18, 884–901.

167

Ruan, S.; Yuan, M.; Zhang, L.; Hu, G.; Chen, J.; Cun, X.; Zhang, Q.; Yang, Y.; He, Q.; Gao H. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 2015, 37, 425–435.

168

O'Mahony, A. M.; Godinho, B. M.; Cryan, J. F.; O'Driscoll, C. M. Non-viral nanosystems for gene and small interfering RNA delivery to the central nervous system: Formulating the solution. J. Pharm. Sci. 2013, 102, 3469–3484.

169

Chen, Y.; Liu, L. Modern methods for delivery of drugs across the blood-brain barrier. Adv. Drug Deliv Rev. 2012, 64, 640–665.

170

Huang, R.; Ke, W.; Liu, Y.; Jiang, C.; Pei, Y. The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials 2008, 29, 238–246.

171

Kumar, P.; Wu, H.; McBride, J. L.; Jung, K. E.; Kim, M. H.; Davidson, B. L.; Lee, S. K.; Shankar, P.; Manjunath, N. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007, 448, 39–43.

172

Chacko, A. M.; Li, C.; Pryma, D. A.; Brem, S.; Coukos, G.; Muzykantov, V. Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: Crossing the blood-brain barrier divide. Expert Opin. Drug Deliv. 2013, 10, 907–926.

173

Allen, T. M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2002, 2, 750–763.

174

Wang, F.; Shen, Y.; Zhang, W.; Li, M.; Wang, Y.; Zhou, D.; Guo, S. Efficient, dual-stimuli responsive cytosolic gene delivery using a RGD modified disulfide-linked polyethylenimine functionalized gold nanorod. J. Control. Release 2014, 196, 37–51.

175

Sakurai, Y.; Hatakeyama, H.; Sato, Y.; Akita, H.; Takayama, K.; Kobayashi, S.; Futaki, S.; Harashima, H. Endosomal escape and the knockdown efficiency of liposomal-siRNA by the fusogenic peptide shGALA. Biomaterials 2011, 32, 5733–5742.

176

Guo, J.; Cheng, W. P.; Gu, J.; Ding, C.; Qu, X.; Yang, Z.; O'Driscoll, C. Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-L-lysine nanocarrier to suppress prostate cancer growth in mice. Eur. J. Pharm. Sci. 2012, 45, 521–532.

177

Kwon, Y. J. Before and after endosomal escape: Roles of stimuli-converting siRNA/polymer interactions in determining gene silencing efficiency. Acc. Chem. Res. 2012, 45, 1077–1088.

178

Koren, E.; Torchilin, V. P. Cell-penetrating peptides: Breaking through to the other side. Trends Mol. Med. 2012, 18, 385–393.

179

Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Photodetection with active optical antennas. Science 2011, 332, 702–704.

180

Schmidt, B.; Loeschner, K.; Hadrup, N.; Mortensen, A.; Sloth, J. J.; Koch, C. B.; Larsen, E. H. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. Anal. Chem. 2011, 83, 2461–2468.

181

Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M. V. How toxic are gold nanoparticles? The State-of-the-Art. Nano Res. 2015, 8, 1771–1799.

182

Xue, H. Y.; Liu, S.; Wong, H. L. Nanotoxicity: A key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine (Lond) 2014, 9, 295–312.

183

Zhang, X. D.; Wu, D.; Shen, X.; Liu, P. X.; Yang, N.; Zhao, B.; Zhang, H.; Sun, Y. M.; Zhang, L. A.; Fan, F. Y. Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int. J. Nanomedicine 2011, 6, 2071–2081.

184

Sun, Y. N.; Wang, C. D.; Zhang, X. M.; Ren, L.; Tian, X. H. Shape dependence of gold nanoparticles on in vivo acute toxicological effects and biodistribution. J. Nanosci. Nanotechnol. 2011, 11, 1210–1216.

185

Thakor, A. S.; Luong, R.; Paulmurugan, R.; Lin, F. I.; Kempen, P.; Zavaleta, C.; Chu, P.; Massoud, T. F.; Sinclair, R.; Gambhir, S. S. The fate and toxicity of Raman-active silica-gold nanoparticles in mice. Sci. Transl. Med. 2011, 3, 79ra33.

186

Simpson, C. A.; Salleng, K. J.; Cliffel, D. E.; Feldheim, D. L. In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles. Nanomedicine 2013, 9, 257–263.

187

Zhang, X. D.; Wu, H. Y.; Wu, D.; Wang, Y. Y.; Chang, J. H.; Zhai, Z. B.; Meng, A. M. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomedicine 2010, 5, 771–781.

188

Abdelhalim, M. A.; Jarrar, B. M. Gold nanoparticles induced cloudy swelling to hydropic degeneration, cytoplasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis in the liver. Lipids Health Dis. 2011, 10, 166.

189

Chen, H.; Dorrigan, A.; Saad, S.; Hare, D. J.; Cortie, M. B.; Valenzuela, S. M. In vivo study of spherical gold nanoparticles: Inflammatory effects and distribution in mice. PLoS One 2013, 8, e58208.

190

You, J.; Zhou, J.; Zhou, M.; Liu, Y.; Robertson, J. D.; Liang, D.; Van Pelt, C.; Li, C. Pharmacokinetics, clearance, and biosafety of polyethylene glycol-coated hollow gold nanospheres. Part. Fibre. Toxicol. 2014, 11, 26.

191

Abdelhalim, M. A.; Jarrar, B. M. The appearance of renal cells cytoplasmic degeneration and nuclear destruction might be an indication of GNPs toxicity. Lipids Health Dis. 2011, 10, 147.

192

Liu, X.; Huang, N.; Wang, H.; Li, H.; Jin, Q.; Ji, J. The effect of ligand composition on the in vivo fate of multidentate poly(ethylene glycol) modified gold nanoparticles. Biomaterials 2013, 34, 8370–8381.

193

Chen, J.; Wang, H.; Long, W.; Shen, X.; Wu, D.; Song, S. S.; Sun, Y. M.; Liu, P. X.; Fan, S.; Fan, F. et al. Sex differences in the toxicity of polyethylene glycol-coated gold nanoparticles in mice. Int. J. Nanomedicine 2013, 8, 2409–2419.

194

Zhang, X. D.; Wu, D.; Shen, X.; Liu, P. X.; Fan, F. Y.; Fan, S. J. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 2012, 33, 4628–4638.

195

Zhang, X. D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y. M.; Liu, P. X.; Liang, X. J. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 2012, 33, 6408–6419.

196

De Jong, W. H.; Hagens, W. I.; Krystek, P.; Burger, M. C.; Sips, A. J.; Geertsma, R. E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008, 29, 1912–1919.

197

Keck, C. M.; Muller, R. H. Nanotoxicological classification system (NCS) - a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur. J. Pharm. Biopharm. 2013, 84, 445–448.

198

Mussen, F.; Salek, S.; Walker, S. A quantitative approach to benefit-risk assessment of medicines—part 1: The development of a new model using multi-criteria decision analysis; part 2: The practical application of a new model. Pharmacoepidemiol. Drug Saf. 2007, Suppl 1, S42–S46.

199

Kostarelos, K.; Miller, A. D. Synthetic, self-assembly ABCD nanoparticles: A structural paradigm for viable synthetic non-viral vectors. Chem. Soc. Rev. 2005, 34, 970–994.

Nano Research
Pages 3111-3140
Cite this article:
Guo J, Rahme K, Fitzgerald KA, et al. Biomimetic gold nanocomplexes for gene knockdown: Will gold deliver dividends for small interfering RNA nanomedicines?. Nano Research, 2015, 8(10): 3111-3140. https://doi.org/10.1007/s12274-015-0829-4

751

Views

18

Crossref

N/A

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 04 March 2015
Revised: 03 June 2015
Accepted: 05 June 2015
Published: 27 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return