Journal Home > Volume 8 , Issue 10

We report a hybrid nanogenerator that includes a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) for scavenging mechanical energy. This nanogenerator operates in a hybrid mode using both the triboelectric and electromagnetic induction effects. Under a vibration frequency of 14 Hz, the fabricated TENG can deliver an open-circuit voltage of about 84 V, a short-circuit current of 43 μA, and a maximum power of 1.2 mW (the corresponding power per unit mass and volume are 1.82 mW/g and 3.4 W/m3, respectively) under a loading resistance of 2 MΩ, whereas the fabricated EMG can produce an opencircuit voltage of about 9.9 V, a short-circuit current of 7 mA, and a maximum power of 17.4 mW (the corresponding power per unit mass and volume are 0.53 mW/g and 3.7 W/m3, respectively) under a loading resistance of 2 kΩ. Impedance matching between the TENG and EMG can be achieved using a transformer to decrease the impedance of the TENG. Moreover, the energy produced by the hybrid nanogenerator can be stored in a home-made Li-ion battery. This research represents important progress toward practical applications of vibration energy generation for realizing self-charging power cells.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 April 2015
Revised: 01 June 2015
Accepted: 03 June 2015
Published: 30 August 2015
Issue date: October 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by Beijing Natural Science Foundation (No. 2154059), National Natural Science Foundation of China (Nos. 51472055 and 61404034), and the "Thousands Talents" program for pioneer researcher and his innovation team, China.

Return