AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy

Ting Quan§Yingchun Wu§Ya Yang ( )
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

We report a hybrid nanogenerator that includes a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) for scavenging mechanical energy. This nanogenerator operates in a hybrid mode using both the triboelectric and electromagnetic induction effects. Under a vibration frequency of 14 Hz, the fabricated TENG can deliver an open-circuit voltage of about 84 V, a short-circuit current of 43 μA, and a maximum power of 1.2 mW (the corresponding power per unit mass and volume are 1.82 mW/g and 3.4 W/m3, respectively) under a loading resistance of 2 MΩ, whereas the fabricated EMG can produce an opencircuit voltage of about 9.9 V, a short-circuit current of 7 mA, and a maximum power of 17.4 mW (the corresponding power per unit mass and volume are 0.53 mW/g and 3.7 W/m3, respectively) under a loading resistance of 2 kΩ. Impedance matching between the TENG and EMG can be achieved using a transformer to decrease the impedance of the TENG. Moreover, the energy produced by the hybrid nanogenerator can be stored in a home-made Li-ion battery. This research represents important progress toward practical applications of vibration energy generation for realizing self-charging power cells.

References

1

Chen, J.; Zhu, G.; Yang, W. Q.; Jing, Q. S.; Bai, P.; Yang, Y.; Hou, T. -C.; Wang, Z. L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094-6099.

2

Rome, L. C.; Flynn, L.; Goldman, E. M.; Yoo, T. D. Generating electricity while walking with loads. Science 2005, 309, 1725-1728.

3

Park, K. -I.; Jeong, C. K.; Ryu, J.; Hwang, G. -T.; Lee, K. J. Flexible and large-area nanocomposite generator based on lead zirconate ttanate particles and carbon nanotubes. Adv. Energy Mater. 2013, 3, 1539-1544.

4

Bai, X. L.; Wen, Y. M.; Yang, J.; Li, P.; Qiu, J.; Zhu, Y. A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance. J. Appl. Phys. 2012, 111, 07A938.

5

Mitcheson, P. D.; Miao, P.; Stark, B. H.; Yeatman, E. M.; Holmes, A. S.; Green, T. C. MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators A 2004, 115, 523-529.

6

Wang, L.; Yuan, F. G. Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 2008, 17, 045009.

7

Yang, W. Q.; Chen, J.; Zhu, G.; Wen, X. N.; Bai, P.; Su, Y. J.; Lin, Y.; Wang, Z. L. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880-886.

8

Tang, W.; Han, C. B.; Zhang, C.; Wang, Z. L. Cover-sheet-based nanogenerator for charging mobile electronics using low-frequency body motion/vibration. Nano Energy 2014, 9, 121-127.

9

Guo, H. Y.; Leng, Q.; He, X. M.; Wang, M. J.; Chen, J.; Hu, C. G.; Xi, Y. A triboelectric generator based on checker-like interdigital electrodes with a sandwiched PET thin film for harvesting sliding energy in all directions. Adv. Energy Mater. 2015, 5, 1400790.

10

Zhang, X. -S.; Han, M. -D.; Wang, R. -X.; Zhu, F. -Y.; Li, Z. -H.; Wang, W.; Zhang, H. -X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168-1172.

11

Guo, H. Y.; Chen, J.; Tian, L.; Leng, Q.; Xi, Y.; Hu, C. G. Airflow-induced triboelectric nanogenerator as a self-powered sensor for detecting humidity and airflow rate. ACS Appl. Mater. Interfaces 2014, 6, 17184-17189.

12

Wu, Y. C.; Wang, X.; Yang, Y.; Wang, Z. L. Hybrid energy cell for harvesting mechanical energy from one motion using two approaches. Nano Energy 2015, 11, 162-170.

13

Zhong, X. D.; Yang, Y.; Wang, X.; Wang, Z. L. Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy, in press, DOI: 10.1016/ j.nanoen.2015.03.012.

14

Wang, X.; Wang, S. H.; Yang, Y.; Wang, Z. L. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors. ACS Nano 2015, 9, 4553-4562.

15

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533-9557.

Nano Research
Pages 3272-3280
Cite this article:
Quan T, Wu Y, Yang Y. Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy. Nano Research, 2015, 8(10): 3272-3280. https://doi.org/10.1007/s12274-015-0827-6

685

Views

136

Crossref

N/A

Web of Science

132

Scopus

12

CSCD

Altmetrics

Received: 14 April 2015
Revised: 01 June 2015
Accepted: 03 June 2015
Published: 30 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return