Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We report a hybrid nanogenerator that includes a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) for scavenging mechanical energy. This nanogenerator operates in a hybrid mode using both the triboelectric and electromagnetic induction effects. Under a vibration frequency of 14 Hz, the fabricated TENG can deliver an open-circuit voltage of about 84 V, a short-circuit current of 43 μA, and a maximum power of 1.2 mW (the corresponding power per unit mass and volume are 1.82 mW/g and 3.4 W/m3, respectively) under a loading resistance of 2 MΩ, whereas the fabricated EMG can produce an opencircuit voltage of about 9.9 V, a short-circuit current of 7 mA, and a maximum power of 17.4 mW (the corresponding power per unit mass and volume are 0.53 mW/g and 3.7 W/m3, respectively) under a loading resistance of 2 kΩ. Impedance matching between the TENG and EMG can be achieved using a transformer to decrease the impedance of the TENG. Moreover, the energy produced by the hybrid nanogenerator can be stored in a home-made Li-ion battery. This research represents important progress toward practical applications of vibration energy generation for realizing self-charging power cells.
Chen, J.; Zhu, G.; Yang, W. Q.; Jing, Q. S.; Bai, P.; Yang, Y.; Hou, T. -C.; Wang, Z. L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094-6099.
Rome, L. C.; Flynn, L.; Goldman, E. M.; Yoo, T. D. Generating electricity while walking with loads. Science 2005, 309, 1725-1728.
Park, K. -I.; Jeong, C. K.; Ryu, J.; Hwang, G. -T.; Lee, K. J. Flexible and large-area nanocomposite generator based on lead zirconate ttanate particles and carbon nanotubes. Adv. Energy Mater. 2013, 3, 1539-1544.
Bai, X. L.; Wen, Y. M.; Yang, J.; Li, P.; Qiu, J.; Zhu, Y. A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance. J. Appl. Phys. 2012, 111, 07A938.
Mitcheson, P. D.; Miao, P.; Stark, B. H.; Yeatman, E. M.; Holmes, A. S.; Green, T. C. MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators A 2004, 115, 523-529.
Wang, L.; Yuan, F. G. Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 2008, 17, 045009.
Yang, W. Q.; Chen, J.; Zhu, G.; Wen, X. N.; Bai, P.; Su, Y. J.; Lin, Y.; Wang, Z. L. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880-886.
Tang, W.; Han, C. B.; Zhang, C.; Wang, Z. L. Cover-sheet-based nanogenerator for charging mobile electronics using low-frequency body motion/vibration. Nano Energy 2014, 9, 121-127.
Guo, H. Y.; Leng, Q.; He, X. M.; Wang, M. J.; Chen, J.; Hu, C. G.; Xi, Y. A triboelectric generator based on checker-like interdigital electrodes with a sandwiched PET thin film for harvesting sliding energy in all directions. Adv. Energy Mater. 2015, 5, 1400790.
Zhang, X. -S.; Han, M. -D.; Wang, R. -X.; Zhu, F. -Y.; Li, Z. -H.; Wang, W.; Zhang, H. -X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168-1172.
Guo, H. Y.; Chen, J.; Tian, L.; Leng, Q.; Xi, Y.; Hu, C. G. Airflow-induced triboelectric nanogenerator as a self-powered sensor for detecting humidity and airflow rate. ACS Appl. Mater. Interfaces 2014, 6, 17184-17189.
Wu, Y. C.; Wang, X.; Yang, Y.; Wang, Z. L. Hybrid energy cell for harvesting mechanical energy from one motion using two approaches. Nano Energy 2015, 11, 162-170.
Zhong, X. D.; Yang, Y.; Wang, X.; Wang, Z. L. Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy, in press, DOI: 10.1016/ j.nanoen.2015.03.012.
Wang, X.; Wang, S. H.; Yang, Y.; Wang, Z. L. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors. ACS Nano 2015, 9, 4553-4562.
Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533-9557.