AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water

Ruowen LiangFenfen JingLijuan ShenNa QinLing Wu( )
State Key Laboratory of Photocatalysis on Energy and EnvironmentFuzhou UniversityFuzhou350002China
Show Author Information

Graphical Abstract

Abstract

Proper design and preparation of high-performance and stable dual functional photocatalytic materials remains a significant objective of research. In this work, highly dispersed noble-metal nanoparticles (Au, Pd, Pt) were immobilized on MIL-100(Fe) (denoted M@MIL-100(Fe)) using a facile room-temperature photodeposition technique. The resulting M@MIL-100(Fe) (M = Au, Pd, and Pt) nanocomposites exhibited enhanced photoactivities toward photocatalytic degradation of methyl orange (MO) and reduction of heavy-metal Cr(Ⅵ) ions under visible-light irradiation (λ ≥ 420 nm) compared with blank-MIL-100(Fe). Combining these results with photoelectrochemical analyses revealed that noble-metal deposition can effectively improve the charge-separation efficiency of MIL-100(Fe) under visible-light irradiation. This phenomenon in turn leads to the enhancement of visible-light-driven photoactivity of M@MIL-100(Fe) toward photocatalytic redox reactions. In particular, the Pt@MIL-100(Fe) with an average Pt particle size of 2 nm exhibited remarkably enhanced photoactivities compared with those of M@MIL-100(Fe) (M = Au and Pd), which can be attributed to the integrative effect of the enhanced light absorption intensity and more efficient separation of the photogenerated charge carrier. In addition, possible photocatalytic reaction mechanisms are also proposed.

Electronic Supplementary Material

Download File(s)
nr-8-10-3237_ESM.pdf (2.5 MB)

References

1

Ferey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191-214.

2

Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Anpo, M.; Matsuoka, M. Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(Ⅳ) metal-organic framework. J. Phys. Chem. C 2012, 116, 20848-20853.

3

Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334-2375.

4

Vallet-Regi, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem., Int. Ed. 2007, 46, 7548-7558.

5

Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450-1459.

6

Millward, A. R.; Yaghi, O. M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 2005, 127, 17998-17999.

7

Harbuzaru, B. V.; Corma, A.; Rey, F.; Atienzar, P.; Jorda, J. L.; Garcia, H.; Ananias, D.; Carlos, L. D.; Rocha, J. Metal-organic nanoporous structures with anisotropic photoluminescence and magnetic properties and their use as sensors. Angew. Chem., Int. Ed. 2008, 47, 1080-1083.

8

Janiak, C. Engineering coordination polymers towards applications. Dalton Trans. 2003, 2781-2804.

9

Zhou, L. M.; Zhang, T. R.; Tao, Z. L.; Chen, J. Ni nanoparticles supported on carbon as efficient catalysts for the hydrolysis of ammonia borane. Nano Res. 2014, 7, 774-781.

10

Ke, F.; Wang, L. H.; Zhu, J. F. Facile fabrication of CdS metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Res. 2015, 8, 1834-1846.

11

Liang, R. W.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(Ⅵ) and oxidation of dyes. J. Hazard. Mater. 2015, 287, 364-372.

12

Liang, R. W.; Shen, L. J.; Jing, F. F.; Wu, W. M.; Qin, N.; Lin, R.; Wu, L. NH2-mediated indium metal-organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(Ⅵ). Appl. Catal. B: Environ. 2015, 162, 245-251.

13

Shen, L. J.; Liang, S. J.; Wu, W. M.; Liang, R. W.; Wu, L. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(Ⅵ). Dalton Trans. 2013, 42, 13649-13657.

14

Zhang, C. -F.; Qiu, L. -G.; Ke, F.; Zhu, Y. -J.; Yuan, Y. -P.; Xu, G. -S.; Jiang, X. A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. J. Mater. Chem. A 2013, 1, 14329-14334.

15

Liu, N. A.; Yao, Y.; Cha, J. J.; McDowell, M. T.; Han, Y.; Cui, Y. Functionalization of silicon nanowire surfaces with metal-organic frameworks. Nano Res. 2012, 5, 109-116.

16

Wu, M. -C.; Sápi, A.; Avila, A.; Szabó, M.; Hiltunen, J.; Huuhtanen, M.; Tóth, G.; Kukovecz, Á.; Kónya, Z.; Keiski, R. et al. Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: Decomposition of organic dyes and efficient H2 generation from ethanol-water mixtures. Nano Res. 2011, 4, 360-369.

17

Zhou, W.; Li, T.; Wang, J. Q.; Qu, Y.; Pan, K.; Xie, Y.; Tian, G. H.; Wang, L.; Ren, Z. Y.; Jiang, B. J. et al. Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Res. 2014, 7, 731-742.

18

Hua, Q.; Shi, F. C.; Chen, K.; Chang, S. J.; Ma, Y. S.; Jiang, Z. Q.; Pan, G. Q.; Huang, W. X. Cu2O-Au nanocomposites with novel structures and remarkable chemisorption capacity and photocatalytic activity. Nano Res. 2011, 4, 948-962.

19

Zhou, X. M.; Liu, G.; Yu, J. G.; Fan, W. H. Surface plasmon resonance-mediated photocatalysis by noble-metal-based composites under visible light. J. Mater. Chem. 2012, 22, 21337-21354.

20

Tada, H.; Kiyonaga, T.; Naya, S. Rational design and applications of highly efficient reaction systems photocatalyzed by noble-metal nanoparticle-loaded titanium(Ⅳ) dioxide. Chem. Soc. Rev. 2009, 38, 1849-1858.

21

Shen, L. J.; Wu, W. M.; Liang, R. W.; Lin, R.; Wu, L. Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale 2013, 5, 9374-9382.

22

Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; Van Tendeloo, G.; Fischer, R. A. Metals@MOFs loading MOFs with metal nanoparticles for hybrid functions. Eur. J. Inorg. Chem. 2010, 2010, 3701-3714.

23

Hou, C.; Zhao, G. F.; Ji, Y. J.; Niu, Z. Q.; Wang, D. S.; Li, Y. D. Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8. Nano Res. 2014, 7, 1364-1369.

24

Jiang, H. -L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc. 2009, 131, 11302-11303.

25

Cheon, Y. E.; Suh, M. P. Enhanced hydrogen storage by palladium nanoparticles fabricated in a redox-active metal-organic framework. Angew. Chem., Int. Ed. 2009, 48, 2899-2903.

26

El-Shall, M. S.; Abdelsayed, V.; Khder, A. E. R. S.; Hassan, H. M. A.; El-Kaderi, H. M.; Reich, T. E. Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101. J. Mater. Chem. 2009, 19, 7625-7631.

27

Horcajada, P.; Surble, S.; Serre, C.; Hong, D. -Y.; Seo, Y. -K.; Chang, J. -S.; Greneche, J. -M.; Margiolaki, I.; Ferey, G. Synthesis and catalytic properties of MIL-100(Fe), an iron(Ⅲ) carboxylate with large pores. Chem. Commun. 2007, 2820-2822.

28

Idris, A.; Hassan, N.; Rashid, R.; Ngomsik, A. -F. Kinetic and regeneration studies of photocatalytic magnetic separable beads for chromium (Ⅵ) reduction under sunlight. J. Hazard. Mater. 2011, 186, 629-635.

29

Pan, X. Y.; Xu, Y. -J. Fast and spontaneous reduction of gold ions over oxygen-vacancy-rich TiO2: A novel strategy to design defect-based composite photocatalyst. Appl. Catal. A: Gen. 2013, 459, 34-40.

30

Liu, X.; Ye, S.; Li, H. -Q.; Liu, Y. -M.; Cao, Y.; Fan, K. -N. Mild, selective and switchable transfer reduction of nitroarenes catalyzed by supported gold nanoparticles. Catal. Sci. Technol. 2013, 3, 3200-3206.

31

Gu, X. J.; Lu, Z. -H.; Jiang, H. -L.; Akita, T.; Xu, Q. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J. Am. Chem. Soc. 2011, 133, 11822-11825.

32

Chen, S. F.; Li, J. P.; Qian, K.; Xu, W. P.; Lu, Y.; Huang, W. X.; Yu, S. H. Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res. 2010, 3, 244-255.

33

Zheng, Z. K.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Whangbo, M. -H. Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J. Mater. Chem. 2011, 21, 9079-9087.

34

Teranishi, T.; Miyake, M. Size control of palladium nanoparticles and their crystal structures. Chem. Mater. 1998, 10, 594-600.

35

Zhang, N.; Liu, S. Q.; Fu, X. Z.; Xu, Y. -J. Synthesis of M@TiO2 (M = Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivity. J. Phys. Chem. C 2011, 115, 9136-9145.

36

Bordiga, S.; Lamberti, C.; Ricchiardi, G.; Regli, L.; Bonino, F.; Damin, A.; Lillerud, K. P.; Bjorgen, M.; Zecchina, A. Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. Chem. Commun. 2004, 2300-2301.

37

Pan, X. Y.; Xu, Y. -J. Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2 with oxygen vacancies for photocatalytic redox reactions under visible light. J. Phys. Chem. C 2013, 117, 17996-18005.

38

Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330-1352.

39

Liu, X. W.; Cao, H. Q.; Yin, J. F. Generation and photocatalytic activities of Bi@Bi2O3 microspheres. Nano Res. 2011, 4, 470-482.

40

Gao, B.; Lin, Y.; Wei, S. J.; Zeng, J.; Liao, Y.; Chen, L. G.; Goldfeld, D.; Wang, X. P.; Luo, Y.; Dong, Z. C. et al. Charge transfer and retention in directly coupled Au-CdSe nanohybrids. Nano Res. 2012, 5, 88-98.

41

Zhang, Y. H.; Zhang, N.; Tang, Z. -R.; Xu, Y. -J. Improving the photocatalytic performance of graphene-TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. Phys. Chem. Chem. Phys. 2012, 14, 9167-9175.

42

Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 2010, 26, 3894-3901.

43

Wang, X. L.; Pehkonen, S. O.; Ray, A. K. Removal of aqueous Cr(Ⅵ) by a combination of photocatalytic reduction and coprecipitation. Ind. Eng. Chem. Res. 2004, 43, 1665-1672.

44

Khalil, L. B.; Mourad, W. E.; Rophael, M. W. Photocatalytic reduction of environmental pollutant Cr(Ⅵ) over some semiconductors under UV/visible light illumination. Appl. Catal. B: Environ. 1998, 17, 267-273.

45

Navío, J. A.; Colón, G.; Trillas, M.; Peral, J.; Domènech, X.; Testa, J. J.; Padrón, J.; Rodríguez, D.; Litter, M. I. Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(Ⅵ) reduction on iron-doped titania prepared by the wet impregnation method. Appl. Catal. B: Environ. 1998, 16, 187-196.

Nano Research
Pages 3237-3249
Cite this article:
Liang R, Jing F, Shen L, et al. M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water. Nano Research, 2015, 8(10): 3237-3249. https://doi.org/10.1007/s12274-015-0824-9

716

Views

175

Crossref

N/A

Web of Science

183

Scopus

13

CSCD

Altmetrics

Received: 10 April 2015
Revised: 13 May 2015
Accepted: 25 May 2015
Published: 14 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return