AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Chemically exfoliated WS2 nanosheets efficiently inhibit amyloid β-peptide aggregation and can be used for photothermal treatment of Alzheimer's disease

Meng LiAndong ZhaoKai DongWen LiJinsong RenXiaogang Qu( )
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesChangchun130022China
Show Author Information

Graphical Abstract

Abstract

Polymerization of amyloid-β peptide (Aβ) into amyloid fibrils is a critical step in the pathogenesis of Alzheimer's disease (AD). Inhibition of Aβ aggregation and destabilization of preformed Aβ fibrils have promising effects against AD and have been used in clinic trials. Herein, we demonstrate, for the first time, the application of WS2 nanosheets, to not only effectively inhibit Aβ aggregation, but also dissociate preformed Aβ aggregates upon near infrared (NIR) irradiation. Additionally, the biocompatible WS2 nanosheets possess the ability to cross the blood-brain barrier (BBB) to overcome the limitations of most previously reported Aβ inhibitors. Through van der Waals and electrostatic interactions between Aβ40 and WS2, Aβ40 monomers can be selectively adsorbed on the surface of the nanosheet to inhibit the Aβ40 aggregation process. Intriguingly, the unique high NIR absorption property of WS2 enables amyloid aggregates to be dissolved upon NIR irradiation. These results will promote biological applications of WS2 and provide new insight into the design of multifunctional nanomaterials for AD treatment.

Electronic Supplementary Material

Download File(s)
nr-8-10-3216_ESM.pdf (2.5 MB)

References

1

Rauk, A. The chemistry of Alzheimer's disease. Chem. Soc. Rev. 2009, 38, 2698-2715.

2

Jakob-Roetne, R.; Jacobsen, H. Alzheimer's disease: From pathology to therapeutic approaches. Angew. Chem., Int. Ed. 2009, 48, 3030-3059.

3

Scott, L. E.; Orvig, C. Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease. Chem. Rev. 2009, 109, 4885-4910.

4

Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem. Rev. 2006, 106, 1995-2044.

5

Hamley, I. W. The amyloid beta peptide: A chemist's perspective. Role in Alzheimer's and fibrillization. Chem. Rev. 2012, 112, 5147-5192.

6

Faller, P.; Hureau, C.; Berthoumieu, O. Role of metal ions in the self-assembly of the Alzheimer's amyloid-β peptide. Inorg. Chem. 2013, 52, 12193-12206.

7

Taniguchi, A.; Sasaki, D.; Shiohara, A.; Iwatsubo, T.; Tomita, T.; Sohma, Y.; Kanai, M. Attenuation of the aggregation and neurotoxicity of amyloid-β peptides by catalytic photooxygenation. Angew. Chem., Int. Ed. 2014, 53, 1382-1385.

8

Tjernberg, L. O.; Näslund, J.; Lindqvist, F.; Johansson, J.; Karlström, A. R.; Thyberg, J.; Terenius, L.; Nordstedt, C. Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 1996, 271, 8545-8548.

9

Takahashi, T.; Mihara, H. Peptide and protein mimetics inhibiting amyloid beta-peptide aggregation. Acc. Chem. Res. 2008, 41, 1309-1318.

10

Frydman-Marom, A.; Rechter, M.; Shefler, I.; Bram, Y.; Shalev D. E.; Gazit, E. Cognitive-performance recovery of Alzheimer's disease model mice by modulation of early soluble amyloidal assemblies. Angew. Chem., Int. Ed. 2009, 48, 1981-1986.

11

Yang, F. S.; Lim, G. P.; Begum, A. N.; Ubeda, O. J.; Simmons, M. R.; Ambegaokar, S. S.; Chen, P. P.; Kayed, R.; Glabe, C. G.; Frautschy, S. A. et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 2005, 280, 5892-5901.

12

Barnham, K. J.; Kenche, V. B.; Ciccotosto, G. D.; Smith, D. P.; Tew, D. J.; Liu, X.; Perez, K.; Cranston, G. A.; Johanssen, T. J.; Volitakis, I. et al. Platinum-based inhibitors of amyloid-beta as therapeutic agents for Alzheimer's disease. Proc. Natl. Acad. Sci. USA 2008, 105, 6813-6818.

13

Ehrnhoefer, D. E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Masino, L.; Lurz, R.; Engemann, S.; Pastore, A.; Wanker, E. E. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nature Struct. Mol. Biol. 2008, 15, 558-566.

14

Necula, M.; Kayed, R.; Milton, S.; Glabe, C. G. Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J. Biol. Chem. 2007, 282, 10311-10324.

15

Nie, Q.; Du, X. -G.; Geng, M. -Y. Small molecule inhibitors of amyloid β peptide aggregation as a potential therapeutic strategy for Alzheimer's disease. Acta Pharmacol. Sin. 2011, 32, 545-551.

16

Ouberai, M.; Dumy, P.; Chierici, S.; Garcia, J. Synthesis and biological evaluation of clicked curcumin and clicked KLVFFA conjugates as inhibitors of beta-amyloid fibril formation. Bioconjugate Chem. 2009, 20, 2123-2132.

17

Liu, L. H.; Xu, K. J.; Wang, H. Y.; Tan, P. K. J.; Fan, W. M.; Venkatraman, S. S.; Li, L. J.; Yang, Y. -Y. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat. Nanotechno. 2009, 4, 457-463.

18

Pan, H.; Soman, N. R.; Schlesinger, P. H.; Lanza, G. M.; Wickline, S. A. Cytolytic peptide nanoparticles ('NanoBees') for cancer therapy. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2011, 3, 318-327.

19

Cabaleiro-Lago, C.; Quinlan-Pluck F.; Lynch I.; Lindman S.; Minogue A. M.; Thulin E.; Walsh D. M.; Dawson, K. A.; Linse, S. Inhibition of amyloid beta protein fibrillation by polymeric nanoparticles. J. Am. Chem. Soc. 2008, 130, 15437-15443.

20

Yoo S. Ⅱ; Yang, M.; Brender, J. R.; Subramanian, V.; Sun, K.; Joo, N. E.; Jeong, S. -H.; Ramamoorthy, A.; Kotov, N. A. Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: Functional similarities with proteins. Angew. Chem., Int. Ed. 2011, 50, 5110-5115.

21

Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206-2210.

22

Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457-460.

23

Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203-212.

24

Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q. C.; Yan, Q. Y.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876-1902.

25

Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666-686.

26

Mahmoudi, M.; Akhavan, O.; Ghavami, M.; Rezaee, F.; Ghiasi, S. M. A. Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale 2012, 4, 7322-7325.

27

Yu, X.; Wang, Q. M.; Lin, Y. N.; Zhao, J.; Zhao, C.; Zheng, J. Structure, orientation, and surface interaction of Alzheimer amyloid-β peptides on the graphite. Langmuir 2012, 28, 6595-6605.

28

Xiao, J; Choi D. W.; Cosimbescu, L.; Koech, P.; Liu, J.; Lemmon, J. P. Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 2010, 22, 4522-5424.

29

Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M. W.; Chhowalla, M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 2012, 6, 7311-7317.

30

Han, J. H.; Lee, S.; Cheon, J. Synthesis and structural transformations of colloidal 2D layered metal chalcogenide nanocrystals. Chem. Soc. Rev. 2013, 42, 2581-2591.

31

Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934-1946.

32

Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093-11097.

33

Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74-80.

34

Shaw, J. C.; Zhou, H. L.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y.; Duan, X. F. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511-517.

35

Kwon, H.; Choi, W.; Lee, D.; Lee, Y.; Kwon, J.; Yoo, B.; Grigoropoulos, C. P.; Kim, S. Selective and localized laser annealing effect for highperformance flexible multilayer MoS2 thin-film transistors. Nano Res. 2014, 7, 1137-1145.

36

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850-855.

37

Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R. T.; Feng, S. M.; Long, A. D.; Hayashi, T.; Kim, Y. A.; Endo, M. et al. Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano 2013, 7, 5235-5242.

38

Bhandavat, R.; David, L.; Singh, G. Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett. 2012, 3, 1523-1530.

39

Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998-6001.

40

Heckl, W. M.; Smith, D. P. E.; Binnig, G.; Klagges, H.; Hänsch, T. W.; Maddocks, J. Two-dimensional ordering of the DNA base guanine observed by scanning tunneling microscopy. Proc. Natl. Acad. Sci. USA 1991, 88, 8003-8005.

41

Moses, P. G.; Mortensen, J. J.; Lundqvist, B. I.; Norskov, J. K. Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS2. J. Chem. Phys. 2009, 130, 104709.

42

Füchtbauer, H. G.; Tuxen, A. K.; Moses, P. G.; Topsøe, H.; Besenbacher, F.; Lauritsen, J. V. Morphology and atomic-scale structure of single-layer WS2 nanoclusters. Phys. Chem. Chem. Phys. 2013, 15, 15971-15980.

43

Geng, J.; Li, M.; Ren, J. S.; Wang, E.; Qu X. G. Polyoxometalates as inhibitors of the aggregation of amyloid β peptides associated with Alzheimer's disease. Angew. Chem., Int. Ed. 2011, 50, 4184-4188.

44

Vathsala, K.; Venkatesha, T. V.; Ranganatha, S.; Kumar, M. K. P. Zn-WS2 nanocomposite coatings on mild steel: Electrochemical aspects. Synth. React. Inorg. M. 2012, 42, 779-785.

45

Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J.; Brinker, C. J.; Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem., Int. Ed. 2013, 52, 4160-4164.

46

Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433-3440.

47

Liu, T.; Shi, S. X.; Liang, C.; Shen, S. D.; Cheng, L.; Wang, C.; Song, X. J.; Goel, S.; Barnhart, T. E.; Cai, W. B. et al. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 2015, 9, 950-960.

48

Kogan, M. J.; Bastus, N. G.; Amigo, R.; Grillo-Bosch, D.; Araya, E.; Turiel, A.; Labarta, A.; Giralt, E.; Puntes, V. F. Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett. 2006, 6, 110-115.

49

Adura, C.; Guerrero, S.; Salas, E.; Medel, L.; Riveros, A.; Mena, J.; Arbiol, J.; Albericio, F.; Giralt, E.; Kogan, M. J. Stable conjugates of peptides with gold nanorods for biomedical applications with reduced effects on cell viability. ACS Appl. Mater. Interfaces 2013, 5, 4076-4085.

50

Li, M.; Yang, X. J.; Ren, J. S.; Qu, K. G.; Qu, X. G. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer's disease. Adv. Mater. 2012, 24, 1722-1728.

51

Rozhkova, E. A.; Ulasov, I.; Lai, B.; Dimitrijevic, N. M.; Lesniak, M. S.; Rajh, T. A high-performance nanobio photocatalyst for targeted brain cancer therapy. Nano Lett. 2009, 9, 3337-3342.

52

Krol, S.; Macrez, R.; Docagne, F.; Defer, G.; Laurent, S.; Rahman, M.; Hajipour, M. J.; Kehoe, P. G.; Mahmoudi, M. Therapeutic benefits from nanoparticles: The potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chem. Rev. 2013, 113, 1877-1903.

53

Joensen, P.; Frindt, R. F.; Morrison, S. R. Single-layer MoS2. Mater. Res. Bull. 1986, 21, 457-461.

54

Eda, G; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.

55

Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem., Int. Ed. 2010, 49, 4059-4062.

56

Yu, H. J.; Li, Meng.; Liu, G. P.; Geng, J.; Wang, J. Z.; Ren, J. S.; Zhao, C. Q.; Qu, X. Q. Metallosupramolecular complex targeting an α/β discordant stretch of amyloid β peptide. Chem. Sci. 2012, 3, 3145-3153.

57

Geng, J.; Li, M.; Wu, L.; Ren, J. S.; Qu, X. G. Liberation of copper from amyloid plaques: Making a risk factor useful for Alzheimer's disease treatment. J. Med. Chem. 2012, 55, 9146-9155.

58

Skaat, H.; Chen, R.; Grinberg, I.; Margel, S. Engineered polymer nanoparticles containing hydrophobic dipeptide for inhibition of amyloid-β fibrillation. Biomacromolecules 2012, 13, 2662-2670.

59

Cabaleiro-Lago, C.; Quinlan-Pluck, F.; Lynch, I.; Dawson, K. A.; Linse, S. Dual effect of amino modified polystyrene nanoparticles on amyloid β protein fibrillation. ACS Chem. Neurosci. 2010, 1, 279-287.

60

Evers, F.; Jeworrek, C.; Tiemeyer, S.; Weise, K.; Sellin, D.; Paulus, M.; Struth, B.; Tolan, M.; Winter, R. Elucidating the mechanism of lipid membrane-induced IAPP fibrillogenesis and its inhibition by the red wine compound resveratrol: A synchrotron X-ray reflectivity study. J. Am. Chem. Soc. 2009, 131, 9516-9521.

61

Seeliger, J.; Evers, F.; Jeworrek, C.; Kapoor, S.; Weise, K.; Andreetto, E.; Tolan, M.; Kapurniotu, A.; Winter, R. Cross-amyloid interaction of Aβ and IAPP at lipid membranes. Angew. Chem., Int. Ed. 2012, 51, 679-683.

62

Mossuto, M. F.; Bolognesi, B.; Guixer, B.; Dhulesia, A.; Agostini, F.; Kumita, J. R.; Tartaglia, G. G.; Dumoulin, M.; Dobson, C. M.; Salvatella, X. Disulfide bonds reduce the toxicity of the amyloid fibrils formed by an extracellular protein. Angew. Chem., Int. Ed. 2011, 50, 7048-7051.

63

Saha, A.; Mondal, G.; Biswas, A.; Chakraborty, I.; Jana, B.; Ghosh, S. In vitro reconstitution of a cell-like environment using liposomes for amyloid beta peptide aggregation and its propagation. Chem. Commun. 2013, 49, 6119-6121.

64

Guo, L.; Salt, T. E.; Luong, V.; Wood, N.; Cheung, W.; Maass, A.; Ferrari, G.; Russo-Marie, F.; Sillito, A. M.; Cheetham, M. E. et al. Targeting amyloid-beta in glaucoma treatment. Proc. Natl. Acad. Sci. USA 2007, 104, 13444-13449.

65

Zhang, M.; Mao, X. B.; Wang, C. X.; Zeng, W. F.; Zhang, C. L.; Li, Z. J.; Fang, Y.; Yang, Y. L.; Liang, W.; Wang, C. The effect of graphene oxide on conformation change, aggregation and cytotoxicity of HIV-1 regulatory protein (Vpr). Biomaterials 2013, 34, 1383-1390.

66

Delcea, M.; Sternberg, N.; Yashchenok, A. M.; Georgieva, R.; Bäumler, H.; Möhwald, H.; Skirtach A. G. Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells. ACS Nano 2012, 6, 4169-4180.

67

Leyva-Gómez, G.; Cortés, H.; Magaña, J. J.; Leyva-García, N.; Quintanar-Guerrero, D.; Florán, B. Nanoparticle technology for treatment of Parkinson's disease: The role of surface phenomena in reaching the brain. Drug Discov. Today, in press, DOI: 10.1016/j.drudis.2015.02.009.

68

Bramini, M.; Ye, D.; Hallerbach, A.; Raghnaill, M. N.; Salvati, A.; Åberg, C.; Dawson, K. A. Imaging approach to mechanistic study of nanoparticle interactions with the blood-brain barrier. ACS Nano 2014, 8, 4304-4312.

69

Hemley, R. J.; Mao, H. K.; Shen, G. Y.; Badro, J.; Gillet, P.; Hanfland, M.; Häusermann, D. X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures. Science 1997, 276, 1242-1245.

70

Smith, M. F.; Gilland, D. R.; Coleman, R. E.; Jaszczak, R. J. Quantitative imaging of iodine-131 distributions in brain tumors with pinhole SPECT: A phantom study. J. Nucl. Med. 1998, 39, 856-864.

71

Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886-1893.

72

Dong, K.; Liu, Z.; Liu, J. H.; Huang, S.; Li, Z. H.; Yuan, Q. H.; Ren J. S.; Qu, X. G. Biocompatible and high-performance amino acids-capped MnWO4 nanocasting as a novel non-lanthanide contrast agent for X-ray computed tomography and T(1)-weighted magnetic resonance imaging. Nanoscale 2014, 6, 2211-2217.

Nano Research
Pages 3216-3227
Cite this article:
Li M, Zhao A, Dong K, et al. Chemically exfoliated WS2 nanosheets efficiently inhibit amyloid β-peptide aggregation and can be used for photothermal treatment of Alzheimer's disease. Nano Research, 2015, 8(10): 3216-3227. https://doi.org/10.1007/s12274-015-0821-z

537

Views

83

Crossref

N/A

Web of Science

82

Scopus

6

CSCD

Altmetrics

Received: 09 April 2015
Revised: 20 May 2015
Accepted: 24 May 2015
Published: 14 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return