Journal Home > Volume 8 , Issue 10

A Cu nanowire (NW)/cuprous oxide (Cu2O)-based semiconductor-liquid junction solar cell with a greatly enhanced efficiency and reduced cost was assembled. The Cu NWs function as a transparent electrode as well as part of the Cu NWs/Cu2O coaxial structures, which remarkably benefit the charge separation. The best solar cell reached a conversion efficiency as high as 1.92% under a simulated AM1.5G illumination, which is 106 times higher than that of cells based on fluorine-doped tin oxide and Cu2O.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells

Show Author's information Haitao ZhaiRanran Wang( )Weiqi WangXiao WangYin ChengLiangjing ShiYangqiao LiuJing Sun( )
The State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050China

Abstract

A Cu nanowire (NW)/cuprous oxide (Cu2O)-based semiconductor-liquid junction solar cell with a greatly enhanced efficiency and reduced cost was assembled. The Cu NWs function as a transparent electrode as well as part of the Cu NWs/Cu2O coaxial structures, which remarkably benefit the charge separation. The best solar cell reached a conversion efficiency as high as 1.92% under a simulated AM1.5G illumination, which is 106 times higher than that of cells based on fluorine-doped tin oxide and Cu2O.

Keywords: cuprous oxide, transparent electrodes, Cu nanowires, semiconductor-liquid junction solar cells

References(39)

1

Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153-161.

2

Costa, R. D.; Lodermeyer, F.; Casillas, R.; Guldi, D. M. Recent advances in multifunctional nanocarbons used in dye-sensitized solar cells. Energy Environ. Sci. 2014, 7, 1281-1296.

3

Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 2013, 4, 2761.

4

Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Gratzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344-347.

5

Hodes, G.; Cahen, D. Perovskite cells roll forward. Nat. Photonics 2014, 8, 87-88.

6

Yuhas, B. D.; Yang, P. D. Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 2009, 131, 3756-3761.

7

Musselman, K. P.; Wisnet, A.; Iza, D. C.; Hesse, H. C.; Scheu, C.; MacManus-Driscoll, J. L.; Schmidt-Mende, L. Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells. Adv. Mater. 2010, 22, E254-E258.

8

Cui, J. B.; Gibson, U. J. A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells. J. Phys. Chem. C. 2010, 114, 6408-6412.

9

Cheng, K.; Li, Q. Q.; Meng, J.; Han, X.; Wu, Y. Q.; Wang, S. J.; Qian, L.; Du, Z. L. Interface engineering for efficient charge collection in Cu2O/ZnO heterojunction solar cells with ordered ZnO cavity-like nanopatterns. Sol. Energy Mater. Sol. Cells 2013, 116, 120-125.

10

Fujimoto, K.; Oku, T.; Akiyama, T. Fabrication and characterization of ZnO/Cu2O solar cells prepared by electrodeposition. Appl. Phys. Express 2013, 6, 086503.

11

Hsu, Y. -K.; Lin, H. -H.; Wu, J. -R.; Chen, M. -H.; Chen, Y. -C.; Lin, Y. -G. Electrochemical growth and characterization of a p-Cu2O thin film on n-ZnO nanorods for solar cell application. RSC Adv. 2014, 4, 7655-7659.

12

Xie, J. L.; Guo, C. X.; Li, C. M. Ga doping to significantly improve the performance of all-electrochemically fabricated Cu2O-ZnO nanowire solar cells. Phys. Chem. Chem. Phys. 2013, 15, 15905-15911.

13

Jose, R.; Thavasi, V.; Ramakrishna, S. Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 2009, 92, 289-301.

14

Xiang, C. X.; Kimball, G. M.; Grimm, R. L.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. 820 mV open-circuit voltages from Cu2O/CH3CN junctions. Energy Environ. Sci. 2011, 4, 1311-1318.

15

Shao, F.; Sun, J.; Gao, L.; Luo, J. Q.; Liu, Y. Q.; Yang, S. W. High efficiency semiconductor-liquid junction solar cells based on Cu/Cu2O. Adv. Funct. Mater. 2012, 22, 3907-3913.

16

Rathmell, A. R.; Bergin, S. M.; Hua, Y. L.; Li, Z. -Y.; Wiley, B. J. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv. Mater. 2010, 22, 3558-3563.

17

Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955-2963.

18

Li, L.; Yu, Z. B.; Hu, W. L.; Chang, C. -H.; Chen, Q.; Pei, Q. B. Efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowire-polymer composite electrode. Adv. Mater. 2011, 23, 5563-5567.

19

Lim, D. C.; Kim, K. -D.; Park, S. -Y.; Hong, E. M.; Seo, H. O.; Lim, J. H.; Lee, K. H.; Jeong, Y.; Song, C.; Lee, E. et al. Towards fabrication of high-performing organic photovoltaics: New donor-polymer, atomic layer deposited thin buffer layer and plasmonic effects. Energy Environ. Sci. 2012, 5, 9803-9807.

20

Guo, H. Z.; Lin, N.; Chen, Y. Z.; Wang, Z. W.; Xie, Q. S.; Zheng, T. C.; Gao, N.; Li, S. P.; Kang, J. Y.; Cai, D. J. et al. Copper nanowires as fully transparent conductive electrodes. Sci. Rep. 2013, 3, 2323.

21

Stewart, I. E.; Rathmell, A. R.; Yan, L.; Ye, S. R.; Flowers, P. F.; You, W.; Wiley, B. J. Solution-processed copper-nickel nanowire anodes for organic solar cells. Nanoscale 2014, 6, 5980-5988.

22

Rathmell, A. R.; Nguyen, M.; Chi, M. F.; Wiley, B. J. Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks. Nano Lett. 2012, 12, 3193-3199.

23

Chung, C. -H.; Song, T. -B.; Bob, B.; Zhu, R.; Duan, H. -S.; Yang, Y. Silver nanowire composite window layers for fully solution-deposited thin-film photovoltaic devices. Adv. Mater. 2012, 24, 5499-5504.

24

Song, M.; You, D. S.; Lim, K.; Park, S.; Jung, S.; Kim, C. S.; Kim, D. -H.; Kim, D. -G.; Kim, J. -K.; Park, J. et al. Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes. Adv. Funct. Mater. 2013, 23, 4177-4184.

25

Cheng, Y.; Wang, S. L.; Wang, R. R.; Sun, J.; Gao, L. A. Copper nanowire based transparent conductive films with high stability and superior stretchability. J. Mater. Chem. C. 2014, 2, 5309-5316.

26

Zhang, D. Q.; Wang, R. R.; Wen, M. C.; Weng, D.; Cui, X.; Sun, J.; Li, H. X.; Lu, Y. F. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J. Am. Chem. Soc. 2012, 134, 14283-14286.

27

Hu, L. B.; Zheng, G. Y.; Yao, J.; Liu, N. A.; Weil, B.; Eskilsson, M.; Karabulut, E.; Ruan, Z. C.; Fan, S. H.; Bloking, J. T. et al. Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 2013, 6, 513-518.

28

McShane, C. M.; Choi, K. -S. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. J. Am. Chem. Soc. 2009, 131, 2561-2569.

29

Wang, L. C.; Tao, M. Fabrication and characterization of p-n homojunctions in cuprous oxide by electrochemical deposition. Electrochem. Solid-State Lett. 2007, 10, H248-H250.

30

Tang, Y. W.; Chen, Z. G.; Jia, Z. J.; Zhang, L. S.; Li, J. L. Electrodeposition and characterization of nanocrystalline cuprous oxide thin films on TiO2 films. Mater. Lett. 2005, 59, 434-438.

31

Zhang, Y. Z.; Zhao, Y. Q.; Li, F. Y.; Sun, Z. X.; Xu, L.; Guo, X. L. Photovoltaic performance enhancement of Cu2O photocathodes by electrostatic adsorption of polyoxometalate on Cu2O crystal faces. RSC Adv. 2014, 4, 1362-1365.

32

Mahalingam, T.; Chitra, J. S. P.; Chu, J. P.; Moon, H.; Kwon, H. J.; Kim, Y. D. Photoelectrochemical solar cell studies on electroplated cuprous oxide thin films. J. Mater. Sci. -Mater. Electron. 2006, 17, 519-523.

33

Tadatsugu, M.; Hideki, T.; Takahiro, S.; Toshihiro, M.; Hirotoshi, S. High-efficiency oxide heterojunction solar cells using Cu2O sheets. Jpn. J. Appl. Phys. 2004, 43, L917.

34

Sears, W. M.; Fortin, E.; Webb, J. B. Indium tin oxide/Cu2O photovoltaic cells. Thin Solid Films 1983, 103, 303-309.

35

Musselman, K. P.; Marin, A.; Wisnet, A.; Scheu, C.; MacManus-Driscoll, J. L.; Schmidt-Mende, L. A novel buffering technique for aqueous processing of zinc oxide nanostructures and interfaces, and corresponding improvement of electrodeposited ZnO-Cu2O photovoltaics. Adv. Funct. Mater. 2011, 21, 573-582.

36

Li, B. H.; Han, C. P.; He, Y. -B.; Yang, C.; Du, H. D.; Yang, Q. -H.; Kang, F. Y. Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ. Sci. 2012, 5, 9595-9602.

37

Heng, L. P.; Wang, X. Y.; Yang, N. L.; Zhai, J.; Wan, M. X.; Jiang, L. p-n-junction-based flexible dye-sensitized solar cells. Adv. Funct. Mater. 2010, 20, 266-271.

38

Assimos, J. A.; Trivich, D. Photovoltaic properties and barrier heights of single-crystal and polycrystalline Cu2O-Cu contacts. J. Appl. Phys. 1973, 44, 1687-1693.

39

Kaneko, M.; Ueno, H.; Nemoto, J. Schottky junction/ohmic contact behavior of a nanoporous TiO2 thin film photoanode in contact with redox electrolyte solutions. Beilstein J. Nanotechnol. 2011, 2, 127-134.

File
nr-8-10-3205_ESM.pdf (635 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 January 2015
Revised: 12 May 2015
Accepted: 20 May 2015
Published: 14 August 2015
Issue date: October 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2012CB932303), the National Natural Science Foundation of China (No. 61301036), Shanghai Municipal Natural Science Foundation (Nos. 13ZR1463600 and 13XD1403900) and the Innovation Project of Shanghai Institute of Ceramics.

Return