Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In recent years, triboelectric nanogenerators have attracted much attention because of their unique potential in self-powered nanosensors and nanosystems. In this paper, we report a cylindrical spiral triboelectric nanogenerator (S-TENG), which not only can produce high electric output to power display devices, but also can be used as a self-powered displacement sensor integrated on a measurement ruler. At a sliding speed of 2.5 m/s, S-TENG can generate a short-circuit current (ISC) of 30 μA and an open-circuit voltage (VOC) of 40 V. As the power source, we fabricate a transparent and flexible hand-driven S-TENG. Furthermore, we demonstrate a self-powered S-TENG-based measuring tapeline that can accurately measure and display the pulled-out distance without the need for an extra battery. The results obtained indicate that TENG-based devices have good potential for application in self-powered measurement systems.
Patolsky, F.; Timko, B. P.; Yu, G. H.; Fang, Y.; Greytak, A. B.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 2006, 313, 1100–1104.
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.
Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425–2427.
Xu, S.; Hansen, B. J.; Wang, Z. L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 2010, 1, 93.
Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.
Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2012, 24, 280–285.
Sebald, G.; Lefeuvre, E.; Guyomar, D. Pyroelectric energy conversion: Optimization principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2008, 55, 538–551.
Yang, Y.; Jung, J. H.; Yun, B. K.; Zhang, F.; Pradel, K. C.; Guo, W. X.; Wang, Z. L. Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO3 nanowires. Adv. Mater. 2012, 24, 5357–5362.
Yang, Y.; Guo, W. X.; Pradel, K. C.; Zhu, G.; Zhou, Y. S.; Zhang, Y.; Hu, Y. F.; Lin, L.; Wang, Z. L. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833–2838.
Beeby, S. P.; Torah, R. N.; Tudor, M. J.; Glynne-Jones, P.; O'Donnell, T.; Saha, C. R.; Roy, S. A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 2007, 17, 1257–1265.
Park, J. C.; Park, J. Y. A bulk micromachined electromagnetic micro-power generator for an ambient vibration-energy-harvesting system. J. Korean Phys. Soc. 2011, 58, 1468–1473.
Tang, W.; Meng, B.; Zhang, H. X. Investigation of power generation based on stacked triboelectric nanogenerator. Nano Energy 2013, 2, 1164–1171.
Han, C. B.; Du, W. M.; Zhang, C.; Tang, W.; Zhang, L. M.; Wang, Z. L. Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes. Nano Energy 2014, 6, 59–65.
Xie, Y. N.; Wang, S. H.; Niu, S. M.; Lin, L.; Jing, Q. S.; Su, Y. J.; Wu, Z. Y.; Wang, Z. L. Multi-layered disk triboelectric nanogenerator for harvesting hydropower. Nano Energy 2014, 6, 129–136.
Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.
Yi, F.; Lin, L.; Niu, S. M.; Yang, J.; Wu, W. Z.; Wang, S. H.; Liao, Q. L.; Zhang, Y.; Wang, Z. L. Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor. Adv. Funct. Mater. 2014, 24, 7488–7494.
Su, Y. J.; Zhu, G.; Yang, W. Q.; Yang, J.; Chen, J.; Jing, Q. S.; Wu, Z. M.; Jiang, Y. D.; Wang, Z. L. Triboelectric sensor for self-powered tracking of object motion inside tubing. ACS Nano 2014, 8, 3843–3850.
Du, W.; Han, X.; Lin, L.; Chen, M.; Li, X.; Pan, C.; Wang, Z. L. A three dimensional multi-layered sliding triboelectric nanogenerator. Adv. Energy Mater. 2014, 4, 1301592.
Zhong, J. W.; Zhang, Y.; Zhong, Q. Z.; Hu, Q. Y.; Hu, B.; Wang, Z. L.; Zhou, J. Fiber-based generator for wearable electronics and mobile medication. ACS Nano 2014, 8, 6273–6280.
Jing, Q. S.; Zhu, G.; Wu, W. Z.; Bai, P.; Xie, Y. N.; Han, R. P. S.; Wang, Z. L. Self-powered triboelectric velocity sensor for dual-mode sensing of rectified linear and rotary motions. Nano Energy 2014, 10, 305–312.
Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.
Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.
Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energ. Environ. Sci. 2013, 6, 3576–3583.