Journal Home > Volume 8 , Issue 10

Two-dimensional (2D) materials are highly promising for flexible electronics, and graphene is the only well-studied transparent conductor. Herein, density functional theory has been used to explore a new transparent conducting material via adsorption of H on a 2D β-GaS sheet. This adsorption results in geometrical changes to the local structures around the H. The calculated electronic structures reveal metallic characteristics of the 2D β-GaS material upon H adsorption and a large optical band gap of 2.72 eV with a significant Burstein-Moss shift of 0.67 eV. The simulated electrical resistivity is as low as 10–4 Ω·cm, comparable to the benchmark for ITO thin films.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Geometrical structures, and electronic and transport properties of a novel two-dimensional β-GaS transparent conductor

Show Author's information Zhangxian Chen1Liang Huang2,3Yongjie Xi1Ran Li1Wanchao Li1Guoqin Xu1( )Hansong Cheng2( )
Department of ChemistryNational University of SingaporeSingapore117543Singapore
Sustainable Energy LaboratoryChina University of Geosciences WuhanWuhan430074China
Department of Chemical and Petroleum EngineeringUniversity of WyomingLaramieWY82071USA

Abstract

Two-dimensional (2D) materials are highly promising for flexible electronics, and graphene is the only well-studied transparent conductor. Herein, density functional theory has been used to explore a new transparent conducting material via adsorption of H on a 2D β-GaS sheet. This adsorption results in geometrical changes to the local structures around the H. The calculated electronic structures reveal metallic characteristics of the 2D β-GaS material upon H adsorption and a large optical band gap of 2.72 eV with a significant Burstein-Moss shift of 0.67 eV. The simulated electrical resistivity is as low as 10–4 Ω·cm, comparable to the benchmark for ITO thin films.

Keywords: density functional theory, two-dimensional material, transparent conductor, transport property, β-GaS

References(34)

1

Pasquarelli, R. M.; Ginley, D. S.; O'Hayre, R. Solution processing of transparent conductors: From flask to film. Chem. Soc. Rev. 2011, 40, 5406–5441.

2

Chen, Z. X.; Li, W. C.; Li, R.; Zhang, Y. F.; Xu, G. Q.; Cheng, H. S. Fabrication of highly transparent and conductive indium–tin oxide thin films with a high figure of merit via solution processing. Langmuir 2013, 29, 13836–13842.

3

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

4

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

5

Macinnes, A. N.; Power, M. B.; Barron, A. R. Chemical vapor deposition of cubic gallium sulfide thin films: A new metastable phase. Chem. Mater. 1992, 4, 11–14.

6

Wen, B.; Melnik, R.; Yao, S.; Li, T. J. Pressure dependent phase stability transformations of GaS: A first principles study. Mat. Sci. Semicon. Proc. 2010, 13, 295–297.

7

Aono, T.; Kase, K.; Kinoshita, A. Near-blue photoluminescence of Zn-doped GaS single crystals. J Appl. Phys. 1993, 74, 2818–2820.

8

Sinha, G.; Panda, S. K.; Datta, A.; Chavan, P. G.; Shinde, D. R.; More, M. A.; Joag, D. S.; Patra, A. Controlled growth of well-aligned GaS nanohornlike structures and their field emission properties. ACS Appl. Mater. Interfaces 2011, 3, 2130–2135.

9

Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649–1654.

10

Gautam, U. K.; Vivekchand, S. R.; Govindaraj, A.; Kulkarni, G. U.; Selvi, N. R.; Rao, C. N. R. Generation of onions and nanotubes of GaS and GaSe through laser and thermally induced exfoliation. J. Am. Chem. Soc. 2005, 127, 3658–3659.

11

Bult, J. B.; Crisp, R.; Perkins, C. L.; Blackburn, J. L. Role of dopants in long-range charge carrier transport for p-type and n-type graphene transparent conducting thin films. ACS Nano 2013, 7, 7251–7261.

12

Wang, X.; Zhi, L. J.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.

13

Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and langmuir-blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.

14

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

15

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

16

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B, 1994, 50, 17953–17979.

17

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

18

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

19

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

20

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

21

Madsen, G. K. H.; Singh, D. J. Boltztrap. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006, 175, 67–71.

22

Lin, C. W.; Zhu, X. J.; Feng, J.; Wu, C. Z.; Hu, S. L.; Peng, J.; Guo, Y. Q.; Peng, L. L.; Zhao, J. Y.; Huang, J. L. et al. Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J. Am. Chem. Soc. 2013, 135, 5144–5151.

23

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

24

d'Amour, H.; Holzapfel, W. B.; Polian, A.; Chevy, A. Crystal structure of a new high pressure polymorph of GaS. Solid State Commun. 1982, 44, 853–855.

25

Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K. et al. Control of graphene's properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613.

26

Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.

27

Kuc, A.; Zibouche, N.; Heine, T. Influence of quantumconfinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.

28

Yang, Y.; Jin, S.; Medvedeva, J. E.; Ireland, J. R.; Metz, A. W.; Ni, J.; Hersam, M. C.; Freeman, A. J.; Marks, T. J. CdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure. J. Am. Chem. Soc. 2005, 127, 8796–8804.

29

Mryasov, O. N.; Freeman, A. J. Electronic band structure of indium tin oxide and criteria for transparent conducting behavior. Phys. Rev. B 2001, 64, 233111.

30

Lange, B.; Freysoldt, C.; Neugebauer, J. Native and hydrogen-containing point defects in Mg3N2: A density functional theory study. Phys. Rev. B 2010, 81, 224109.

31

Chen, Z. X.; Huang, L.; Zhang, Q. F.; Xi, Y. J.; Li, R.; Li, W. C.; Xu, G. Q.; Cheng, H. S. Electronic structures and transport properties of n-type-doped indium oxides. J. Phys. Chem. C 2015, 119, 4789–4795.

32

Medvedeva, J. E.; Hettiarachchi, C. L. Tuning the properties of complex transparent conducting oxides: Role of crystal symmetry, chemical composition, and carrier generation. Phys. Rev. B 2010, 81, 125116.

33

Preissler, N.; Bierwagen, O.; Ramu, A. T.; Speck, J. S. Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films. Phys. Rev. B 2013, 88, 085305.

34

Kipperman, A. H. M.; van der Leeden, G. A. Photo-conductivity and photo Hall-effect measurements on gallium sulphide single crystals. Solid State Commun. 1968, 6, 657–662.

File
nr-8-10-3177_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 March 2015
Revised: 03 May 2015
Accepted: 14 May 2015
Published: 16 July 2015
Issue date: October 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was financially supported by National University of Singapore, Ministry of Education of Singapore, Ministry of Defence of Singapore, National Research Foundation of Singapore and National Natural Science Foundation of China (Nos. 21233006 and 21473164).

Return