Journal Home > Volume 8 , Issue 10

Chemical vapor deposition (CVD) synthesis of large-domain hexagonal boron nitride (h-BN) with a uniform thickness is very challenging, mainly due to the extremely high nucleation density of this material. Herein, we report the successful growth of wafer-scale, high-quality h-BN monolayer films that have large single-crystalline domain sizes, up to ~72 μm in edge length, prepared using a folded Cu-foil enclosure. The highly confined growth space and the smooth Cu surface inside the enclosure effectively reduced the precursor feeding rate together and induced a drastic decrease in the nucleation density. The orientation of the as-grown h-BN monolayer was found to be strongly correlated to the crystallographic orientation of the Cu substrate: the Cu (111) face being the best substrate for growing aligned h-BN domains and even single-crystalline monolayers. This is consistent with our density functional theory calculations. The present study offers a practical pathway for growing high-quality h-BN films by deepening our fundamental understanding of the process of their growth by CVD.

File
nr-8-10-3164_ESM.pdf (3.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 March 2015
Revised: 11 May 2015
Accepted: 12 May 2015
Published: 14 August 2015
Issue date: October 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 51432002, 50121091, 51290272, and 51222201), the National Basic Research Program of China (Nos. 2013CB932603, 2012CB933404, 2011CB933003, 2011CB921903, and 2012CB921404), and the Ministry of Education (No. 20120001130010).

Return