AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Optical mesoscopic membrane sensor layouts for water-free and blood-free toxicants

Sherif A. El-Safty1,2( )Mohamed Khairy1Mohamed A. Shenashen1Emad Elshehy1Wojciech Warkocki1Masaru Sakai3
National Institute for Materials Science (NIMS)1-2-1 Sengen, Tsukuba-shiIbaraki305-0047Japan
Graduate School for Science and EngineeringWaseda University, 3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
Center for Research in Isotopes and Environmental DynamicsTsukuba University, 1-1-1 Tennodai, TsukubaIbaraki305-8572Japan
Show Author Information

Graphical Abstract

Abstract

Advances in fabrication of mesoscopic membrane sensors with unique structures and morphologies inside anodic alumina membrane (AAM) nanochannels have led to the development of various methods for detecting, visualizing, adsorbing, filtering, and recovering ultra-trace concentrations of toxic metal ions, such as Hg2+ and Pb2+, in water and blood. These often "one-pot" screening methods offer advantages over conventional methods in that they do not require sophisticated instruments or laborious sample preparation. In the present study, we fabricated two mesoscopic membrane sensors for naked-eye detection, recognition, filtration, and recovery of Hg2+ and Pb2+ in biological and environmental samples. These sensors were characterized by the dense immobilization of organic colorants on the mesopore surfaces of silica nanotubes that were constructed using the nanochannels of an AAM as a scaffold. We confirmed that the nanotubes were oriented along the long axis of the AAM nanochannels, open at both ends, and completely and uniformly filled with organic colorants; also, the dense immobilization of the organic colorants did not affect the speed of ion-to-ligand binding events. We used simple, desk-top, flow-through assays to assess the suitability of the developed membrane sensors for detection, removal, and filtration of Hg2+ and Pb2+ with respect to recyclability and continuous monitoring. Removal of the target ions from biological fluids was assessed by means of flow cytometric analysis. Our results demonstrate the potential of our membrane sensors to be used for preventing the health risks associated with exposure to toxic metal ions in the environment and blood.

Electronic Supplementary Material

Download File(s)
nr-8-10-3150_ESM.pdf (3.6 MB)

References

1

Afal, A.; Wiener, S. W. Metal toxicity. Medscape Org. 2014-04-21.

2

Bánfalvi, G. Heavy metals, trace elements and their cellular effects. In Cellular Effects of Heavy Metals; Springer: Dordrecht, 2011; pp 3–28.

3

El-Safty, S. A.; Ismael, M.; Shahat, A.; Shenashen, M. A. Mesoporous hexagonal and cubic aluminosilica adsorbents for toxic nitroanilines from water. Envir. Sci. Poll. Res. 2013, 20, 3863–3876.

4

Dufault, R.; LeBlanc, B.; Schnoll, R.; Cornett, C.; Schweitzer, L.; Wallinga, D.; Hightower, J.; Patrick, L.; Lukiw, W. Mercury from chlor-alkali plants: Measured concentrations in food product sugar. Environ. Health 2009, 8, 2.

5

El-Safty, S. A.; D. Prabhakaran, D.; Ismail, A. A.; Matsunaga, H.; Mizukami, F. Three-dimensional wormhole and ordered mesostructures and their applicability as optically ion-sensitive probe templates. Chem. Mater. 2008, 20, 2644–2654.

6

Needleman, H. Lead poisoning. Ann. Rev. Med. 2004, 55, 209–222.

7

El-Safty, S. A.; Shenashen, M. A.; Ismail, A. A. A multi-pH-dependent, single optical mesosensor/captor design for toxic metals. Chem. Commun. 2012, 48, 9652–9654.

8

Ruprich, J.; Rehurkova, I. Risk assessment and management interface—example of methylmercury in fish. In Total Diet Studies; Springer Science, Business media: New York, 2013; pp 513–520.

9

El-Safty, A. S.; Shenashen, M. A. Mercury-ion optical sensors. TrAC Trend Anal. Chem. 2012, 38, 98–115.

10

Jung, J. H.; Lee, J. H.; Shinkai, S. Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. Chem. Soc. Rev. 2011, 40, 4464–4474.

11

Aragay, G.; Pons, J.; Merkoci, A. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 2011, 111, 3433–3458.

12
World Health Organization. Stop lead poisoning in children. http://www.who.int/mediacentre/news/notes/2013/lead-20131018/en/ (accessed May 17, 2014).
13

El-Safty, S. A.; Abdellatef, S.; Ismael. M.; Shahat, A. Optical nanosphere sensor based on shell-by-shell fabrication for removal of toxic metals from human blood. Adv. Healthcare Mater. 2013, 2, 854–862.

14

Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 2012, 5, 47–58.

15

Nielen, M. W. F.; Marvin, H. J. P. Food Contaminants and Residue Analysis, Comprehensive Analytical Chemistry; Elsevier: Amsterdam, 2008; pp1–28.

16

Blannn, A.; Ahmed, N. Blood Science: Principles and Pathology; John Wiley & Sons: Chichester, West Sussex, 2014.

17

Forde, M. S.; Dewailly, E.; Robertson L.; Laouan Sidi, A. E.; Sandy, L. S.; Dumas P.; Ayotte, P. Mercury and lead blood concentrations in pregnant women from 10 caribbean countries. Environ. Sci. Process Impact 2014, 16, 2184–2190.

18

Barbosa, Jr. F.; Tanus-Santos, J. E.; Gerlach, R. F.; Parsons, P. J. A critical review of biomarkers used for monitoring human exposure to lead: Advantages, limitations, and future needs. J. Environ. Health Persp. 2005, 113, 1669–1674.

19

El-Safty, S.; Shenashen, M. A. Size-selective separations of biological macromolecules on mesocylinder silica arrays. Anal. Chim. Acta 2011, 694, 151–161.

20

Kebbekus, B. B. Preparation of Samples for Metals Analysis. In Sample Preparations Techniques in Analytical Chemistry; Mitra, S., Eds.; Jone Wiley and Sons, Inc. : New Jersey, 2003; pp227–270.

21

Townsend, A. T.; Miller, K. A.; McLean, S.; Aldous, S. The determination of copper, zinc, cadmium and lead in urine by high resolution ICP-MS. J. Anal. At. Spectrom. 1998, 13, 1213–1219.

22

Locatelli, C.; Melucci, D.; Torsi, G. Determination of platinum-group metals and lead in vegetable environmental bio-monitors by voltammetric and spectroscopic techniques: Critical comparison. Anal. Bioanal. Chem. 2005, 382, 1567–1573.

23

Ros-Lis, J. V.; Casasús, R.; Comes, M.; Coll, C.; Marcos, M. D.; Martínez-Máñez, R.; Sancenón, F.; Soto, J.; Amorós, P.; El Haskouri, J. et al. A mesoporous 3D hybrid material with dual functionality for Hg2+ detection and adsorption. Chem. —Eur. J. 2008, 14, 8267–8278.

24

Balaji, T.; El-Safty, S. A.; Matsunaga, H.; Hanaoka, T.; Mizukami, F. Optical sensors-based nanostructured cage materials for detection of toxic metal ions. Angew. Chem., Int. Ed. 2006, 45, 7202–7208.

25

Jiang S.; Cheng, R.; Ng, R.; Huang, Y.; Duan, X. F. Highly sensitive detection of mercury(Ⅱ) ions with few-layer molybdenum disulfide. Nano Res. 2015, 8, 257–262.

26

El-Safty, S. A.; Ismail, A.; Matsunaga, H.; Mizukami, F. Uniformly mesocaged cubic Fd3m monoliths as modal carriers for optical chemosensors. J. Phys. Chem. C 2008, 112, 4825–4835.

27

Duan, J. L.; Song, L. X.; Zhan, J. H. One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. Nano Res. 2009, 2, 61–68.

28

Shenashen, M. A.; Elshehy, E. A.; El-Safty, S. A.; Khairy, M. Visual monitoring and removal of divalent copper, cadmium, and mercury ions from water by using mesoporous cubic Ia3d aluminosilica sensors. Sep. Pur. Tech. 2013, 116, 73–86.

29

Lee, H. Y.; Bae, D. R.; Park, J. C.; Song, H.; Han, W. S.; Jung, J. H. A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: Removal of Pb2+ from human blood. Angew. Chem., Int. Ed. 2009, 48, 1239–1243.

30

El-Safty, S. A.; Shenashen, M. A.; Khairy, M.; Ismeal, M. Encapsulation of proteins into tunable and giant mesocage alumina. Chem. Commun. 2012, 48, 6708–6710.

31

El-Safty, S. A.; Shenashen, M. A.; Khairy, M.; Ismeal, M. Mesocylindrical aluminosilica monolith biocaptors for size-selective macromolecule cargos. Adv. Funct. Mater. 2012, 22, 3013–3021.

32

Hoa, N. D.; El-Safty, S. A. Synthesis of mesoporous NiO nanosheets for the detection of toxic NO2 gas. Chem. —Eur. J. 2011, 17, 12896–12901.

33

Das, S. K.; El-Safty, S. A. Development of mesoscopically assembled sulfated zirconia nanoparticles as promising heterogeneous and recyclable biodiesel catalysts. Chem. Cat. Chem. 2013, 5, 3050–3059.

34

Khairy, M.; El-Safty, S. A. Hemoproteins–nickel foam hybrids as effective supercapacitors. Chem. Commun. 2014, 50, 1356–1358.

35

Lee, S. J.; Bae, D. R.; Han, W. S.; Lee, S. S.; Jung, J. H. Different morphological organic-inorganic hybrid nanomaterials as fluorescent chemosensors and adsorbents for Cu(Ⅱ) Ions. Eur. J. Inorg. Chem. 2008, 10, 1559–1564.

36

Martin, C. R. Nanomaterials - a membrane-based synthetic approach. Science 1994, 266, 1961–1966.

37

El-Safty, A. S.; Mekawy, M.; Yamaguchi, A.; Shahat, A.; Ogawa, K.; Teramae, N. Organic–inorganic mesoporous silica nanostrands for ultrafine filtration of spherical nanoparticles. Chem. Commun. 2010, 46, 3917–3919.

38

Platschek, B.; Petkov, N.; Bein, T. Tuning the structure and orientation of hexagonally ordered mesoporous channels in anodic alumina membrane hosts: A 2D small-angle X-ray scattering study. Angew. Chem., Int. Ed. 2006, 45, 1134–1138.

39

El-Safty, S. A.; Shahat, A.; Awual Md. R.; Mekawy, M. Large three-dimensional mesocage pores tailoring silica nanotubes as membrane filters: Nanofiltration and permeation flux of proteins. J. Mater. Chem. 2011, 21, 5593–5603.

40

El-Safty, S. A. Designs for size-exclusion separation of macromolecules by densely engineered mesofilters. TrAC Trends Anal. Chem. 2011, 30, 447–458.

41

Kang, D. Y.; Zang, J.; Wright, E. R.; McCanna, A. L.; Jones, C. W.; Nair, S. Dehydration, dehydroxylation, and rehydroxylation of single-walled aluminosilicate nanotubes. ACS Nano 2010, 8, 4897–4907.

42

Meoto, S.; Coppens, M. -O. Anodic alumina-templated synthesis of mesostructured silica membranes – Current status and challenges. J. Mater. Chem. A. 2014, 2, 5640–5654.

43

El-Safty, S. A.; Shahat, A.; Warkocki, W.; Ohnuma, M. Building-block-based mosaic cage silica nanotubes for molecular transport and separation. Small 2011, 7, 62–65.

44

Pikus, S.; Solovyov, L. A.; Kozak, M.; Jaroniec, M. Comparative studies of P6m siliceous mesostructures by powder X-ray diffraction and nitrogen adsorption. Appl. Surf. Sci. 2007, 253, 5682–5687.

45

El-Safty, S. A.; Prabhakaran, D.; Kiyozumi, Y.; Mizukami, F. Nanoscale membrane strips for benign sensing of Hg (Ⅱ) ions: A route to commercial waste treatments. Adv. Funct. Mater. 2008, 18, 1739–1750.

46

Li, F.; Stein, A. Functional composite membranes based on mesoporous silica spheres in a hierarchically porous matrix. Chem. Mater. 2010, 22, 3790–3797.

47

Khairy, M.; El-Safty, S. A.; Shenashen, M. A.; Elshehy, E. A. Hierarchically inorganic–organic multi-shelled nanospheres for intervention and treatment of lead-contaminated blood. Nanoscale 2013, 5, 7920–7927.

48

El-Safty, S. A.; Shenashen, M. A.; Shahat, A. Tailor-made micro-object optical sensor based on mesoporous pellets for visual monitoring and removal of toxic metal ions from aqueous media. Small 2013, 9, 2288–2296.

49

Shenashen, M. A.; El-Safty, S. A.; Elshehy, E. A. Monolithic scaffolds for highly selective ion sensing/removal of Co(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) ions in water. Analyst 2014, 139, 6393–6405.

50

Shenashen, M. A.; El-Safty, S. A.; Elshehy, E. A.; Khairy, M. Hexagonal-prism-shaped optical sensor/captor for the optical recognition and sequestration of Pd ions from urban mines. Eur. J. Inorg. Chem. 2015, 1, 179–191.

51

Khairy, M.; El-Safty, S. A.; Shenashen, M. A. Environmental remediation and monitoring of cadmium. TrAC Trends Anal. Chem. 2014, 62, 56–68.

52

El-Safty, S. A.; Ismail, A. A.; Matsunaga, H.; Hanaoka, T.; Mizukami, F. Optical nanoscale pool-on-surface design for control sensing recognition of multiple cations. Adv. Funct. Mater. 2008, 18, 1485–1500.

53

Shenashen, M. A.; El-Safty, S. A.; Elshehy, E. A. Architecture of optical sensor for recognition of multiple toxic metal ions from Water. J. Hazard. Mater. 2013, 260, 833–843.

54

El-Safty, S. A.; Shenashen, M. A. Optical mesosensor for capturing of Fe(Ⅲ) and Hg(Ⅱ) Ions from water and physiological fluids. Sens. Actuat. B: Chem. 2013, 183, 58–70.

Nano Research
Pages 3150-3163
Cite this article:
El-Safty SA, Khairy M, Shenashen MA, et al. Optical mesoscopic membrane sensor layouts for water-free and blood-free toxicants. Nano Research, 2015, 8(10): 3150-3163. https://doi.org/10.1007/s12274-015-0815-x

608

Views

53

Crossref

N/A

Web of Science

51

Scopus

1

CSCD

Altmetrics

Received: 19 February 2015
Revised: 11 May 2015
Accepted: 12 May 2015
Published: 19 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return