Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Si hybrid solar cells have attracted tremendous research attention in recent years because of their low production costs and high performance. However, flexible Si hybrid solar cells have rarely been reported owing to the difficulty of fabricating single-crystalline Si with good flexibility. In this study, we fabricated flexible Si/PEDOT: PSS hybrid solar cells with micro-pyramid-structured Si light absorbers using a facile approach. Compared with planar flexible hybrid solar cells with a power-conversion efficiency of 4%, solar cells with micro-pyramid-structured Si light absorbers have a higher efficiency of 6.3%. External quantum efficiency and electrochemical impedance spectroscopy measurements revealed that the solar cells with micro-pyramid-structured Si light absorbers exhibited a pronounced light-harvesting enhancement in the spectra region of 400–1, 000 nm and had a smaller series resistance and larger recombination resistance compared with the planar cells, yielding a higher efficiency. Additionally, in mechanical-bending tests, the flexible solar cells with micro-pyramid-structured Si light absorbers exhibited an excellent performance stability after bending for 600 cycles. Our findings lay the foundation for the real-world applications of flexible Si/PEDOT: PSS hybrid solar cells in next-generation portable electronics.
Zhang, J.; Zhang, Y. F.; Zhang, F. T.; Sun, B. Q. Electrical characterization of inorganic-organic hybrid photovoltaic devices based on silicon-poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate). Appl. Phys. Lett. 2013, 102, 013501.
Thiyagu, S.; Hsueh, C. -C.; Liu, C. -T.; Syu, H. -J.; Lin, T. -C.; Lin, C. -F. Hybrid organic-inorganic heterojunction solar cells with 12% efficiency by utilizing flexible film-silicon with a hierarchical surface. Nanoscale 2014, 6, 3361–3366.
Baca, A. J.; Yu, K. J.; Xiao, J. L.; Wang, S. D.; Yoon, J.; Ryu, J. H.; Stevenson, D.; Nuzzo, R. G.; Rockett, A. A.; Huang, Y. G. et al. Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs. Energy Environ. Sci. 2010, 3, 208–211.
Kim, S. J.; We, J. H.; Cho, B. J. A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 2014, 7, 1959–1965.
Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao X. L.; Gopalsamy, K.; Sun, H. Y.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.
Jung, S.; Lee, J.; Hyeon, T.; Lee, M.; Kim, D. -H. Fabric-based integrated energy devices for wearable activity monitors. Adv. Mater. 2014, 26, 6329–6334.
Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992.
Cima, M. J. Next-generation wearable electronics. Nat. Biotechnol. 2014, 32, 642–643.
Weisse, J. M.; Kim, D. R.; Lee, C. H.; Zheng, X. L. Vertical transfer of uniform silicon nanowire arrays via crack formation. Nano Lett. 2011, 11, 1300–1305.
Wu, L.; Li, S. X.; He, W. W.; Teng, D. Y.; Wang, K.; Ye, C. H. Automatic release of silicon nanowire arrays with a high integrity for flexible electronic devices. Sci. Rep. 2014, 4, 3940.
Weisse, J. M.; Lee, C. H.; Kim, D. R.; Zheng, X. L. Fabrication of flexible and vertical silicon nanowire electronics. Nano Lett. 2012, 12, 3339–3343.
Vlada, A.; Reddya, A. L. M.; Ajayana, A.; Singha, N.; Gohyc, J. -F.; Melinteb, S.; Ajayan, P. M. Roll up nanowire battery from silicon chips. Proc. Natl. Acad. Soc. USA 2012, 109, 15168–15173.
Wang, S.; Weil, B. D.; Li, Y. B.; Wang, K. X. Z.; Garnett, E.; Fan, S. H.; Cui, Y. Large-area free-standing ultrathin single-crystal silicon as processable materials. Nano Lett. 2013, 13, 4393–4398.
Zhu, Y. W.; Song, T.; Zhang, F. T.; Lee, S. -T.; Sun, B. Q. Efficient organic-inorganic hybrid Schottky solar cell: The role of built-in potential. Appl. Phys. Lett. 2013, 102, 113504.
Woo, S.; Jeong, J. H.; Lyu, H. K.; Jeong, S.; Sim, J. H.; Kim, W., H.; Han, Y. S.; Kim, Y. Hybrid solar cells with conducting polymers and vertically aligned silicon nanowire arrays: The effect of silicon conductivity. Phys. B-Condens. Matter 2012, 407, 3059–3062.
Weickert, J.; Dunbar, R. B.; Hesse, H. C.; Wiedemann, W.; Schmidt-Mende, L. Nanostructured organic and hybrid solar cells. Adv. Mater. 2011, 23, 1810–1828.
Thomas, J. P.; Leung, K. T. Defect-minimized PEDOT: PSS/planar-Si solar cell with very high efficiency. Adv. Funct. Mater. 2014, 24, 4978–4985.
Zhang, Y. F.; Cui, W.; Zhu, Y. W.; Zu, F. S.; Liao, L. S.; Lee, S. -T.; Sun, B. Q. High efficiency hybrid PEDOT: PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact. Energy Environ. Sci. 2015, 8, 297–302.
Shen, X. J.; Sun, B. Q.; Liu, D.; Lee, S. -T. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture. J. Am. Chem. Soc. 2011, 133, 19408–19415.
Shiu, S. -C.; Chao, J. -J.; Hung, S. -C.; Yeh, C. -L.; Lin, C. -F. Morphology dependence of silicon nanowire/poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) heterojunction solar cells. Chem. Mater. 2010, 22, 3108–3113.
Shen, X. J.; Zhu, Y. W.; Song, T.; Lee, S. -T.; Sun, B. Q. Hole electrical transporting properties in organic-Si Schottky solar cell. Appl. Phys. Lett. 2013, 103, 013504.
Pietsch, M.; Jäckle, S.; Christiansen, S. Interface investigation of planar hybrid n-Si/PEDOT: PSS solar cells with open circuit voltages up to 645 mV and efficiencies of 12.6%. Appl. Phys. A. 2014, 115, 1109–1113.
Yu, P. C.; Tsai C. -Y.; Chang, J. -K.; Lai, C. -C.; Chen, P. -H.; Lai, Y. -C.; Tsai, P. -T.; Li, M. -C.; Pan, H. -T.; Huang, Y. -Y. et al. 13% Efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. ACS Nano. 2013, 7, 10780–10787.
Sharma, M.; Pudasaini, P. R.; Ruiz-Zepeda, F.; Elam, D.; Ayon, A. A. Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT: PSS. ACS Appl. Mater. Interfaces 2014, 6, 4356–4363.
Hu, H. B.; Chen, Q. -W.; Cheng, K.; Tang, J. Visually readable and highly stable self-display photonic humidity sensor. J. Mater. Chem. 2012, 22, 1021–1027.
Tao, B. R.; Miao, F. J.; Chu, J. H. Structure and photoelectrochemical properties of silicon microstructures arrays. Electrochim. Acta 2013, 108, 248–252.
Peng, K. -Q.; Wang, X.; Wu, X. L.; Lee, S. -T. Fabrication and photovoltaic property of ordered macroporous silicon. Appl. Phys. Lett. 2009, 95, 143119.
Peng, K. Q.; Lee, S. -T. Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater. 2011, 23, 198–215.
Chen, T. -G.; Huang, B. -Y.; Chen, E. -C.; Yu, P. C.; Meng, H. -F. Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency. Appl. Phys. Lett. 2012, 101, 033301.
Aspnes, D. E.; Studna, A. A. Dielectric functions and optical-parameters of Si, Ge, GaP, GaAs, GaSb, InP, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 1983, 27, 985–1009.
He, L. N.; Jiang, C. Y.; Wang, H.; Lai, D.; Rusli. High efficiency planar Si/organic heterojunction hybrid solar cells. Appl. Phys. Lett. 2012, 100, 073503.
Liu, Q.; Khatri, I.; Ishikawa, R.; Ueno, K.; Shirai, H. Effects of molybdenum oxide molecular doping on the chemical structure of poly(3, 4-ethylenedioxythiophene): poly(stylenesulfonate) and on carrier collection efficiency of silicon/poly(3, 4-ethylenedioxythiophene): poly(stylenesulfonate) heterojunction solar cells. Appl. Phys. Lett. 2013, 102, 183503.
Chi, D.; Qi, B. Y.; Wang, J. Z.; Qu, S. C.; Wang, Z. G. High-performance hybrid organic-inorganic solar cell based on planar n-type silicon. Appl. Phys. Lett. 2014, 104, 193903.
Yim, C.; McEvoy, N.; Duesberg, G. S. Characterization of graphene-silicon Schottky barrier diodes using impedance spectroscopy. Appl. Phys. Lett. 2013, 103, 193106.
Raniero, L.; Fortunato, E.; Ferreira, I.; Martins, R. Study of nanostructured/amorphous silicon solar cell by impedance spectroscopy technique. J. Non-Cryst. Solid. 2006, 352, 1880–1883.
Crain, D. J.; Rock, S. E.; Garland, J. E.; Roy, D. Comparison of D. C. and A. C. electro-analytical methods for measuring diode ideality factors and series resistances of silicon solar cells. Curr. Appl. Phys. 2013, 13, 2087–2097.
Bao, X. -Q.; Liu, L. F. Platinum nanoparticle interlayer promoted improvement in photovoltaic performance of silicon/PEDOT: PSS hybrid solar cells. Mater. Chem. Phys. 2015, 149–150, 309–316.
Kumar, S.; Singh, P. K.; Chilana, G. S.; Dhariwal, S. R. Generation and recombination lifetime measurement in silicon wafers using impedance spectroscopy. Semicond. Sci. Technol. 2009, 24, 095001.
He, W. W.; Wu, K. J.; Wang, K.; Shi, T. F.; Wu, L.; Li, S. X.; Teng, D. Y.; Ye, C. H. Towards stable silicon nanoarray hybrid solar cells. Sci. Rep. 2014, 4, 3715.