Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Owing to the unique conjugated structure, the chemical-reaction selectivity of single-walled carbon nanotubes (SWNTs) has attracted great attention. By utilizing the radial deformation of SWNTs caused by the strong interactions with the quartz lattice, we achieve an anomalous diameter-dependent reaction selectivity of quartz lattice-oriented SWNTs in treatment with iodine vapor; this is distinctly different from the widely reported and well accepted higher reaction activity in small-diameter tubes compared to large-diameter tubes. The radial deformation of SWNTs on quartz substrate is verified by detailed Raman spectroscopy and mappings in both G-band and radial breathing mode. Due to the strong interaction between SWNTs and the quartz lattice, large-diameter tubes present a larger degree of radial deformation and more delocalized partial electrons are distributed at certain sidewall sites with high local curvature. It is thus easier for the carbon–carbon bonds at these high-curvature sites on large-diameter tubes to break down during reaction. This anomalous reaction activity offers a novel approach for selective removal of small-bandgap large-diameter tubes.
Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603-605.
Wang, C.; Takei, K.; Takahashi, T.; Javey, A. Carbon nanotube electronics-moving forward. Chem. Soc. Rev. 2013, 42, 2592-2609.
Oh, J.; Chang, Y. W.; Kim, H. J.; Yoo, S.; Kim, D. J.; Im, S.; Park, Y. J.; Kim, D.; Yoo, K. H. Carbon nanotube-based dual-mode biosensor for electrical and surface plasmon resonance measurements. Nano Lett. 2010, 10, 2755-2760.
Wohlstadter, J. N.; Wilbur, J. L.; Sigal, G. B.; Biebuyck, H. A.; Billadeau, M. A.; Dong, L. W.; Fischer, A. B.; Gudibande, S. R.; Jamieson, S. H.; Kenten, J. H. et al. Carbon nanotube-based biosensor. Adv. Mater. 2003, 15, 1184-1187.
An, K. H.; Park, J. S.; Yang, C. M.; Jeong, S. Y.; Lim, S. C.; Kang, C.; Son, J. H.; Jeong, M. S.; Lee, Y. H. A diameter-selective attack of metallic carbon nanotubes by nitronium ions. J. Am. Chem. Soc. 2005, 127, 5196-5203.
Zhang, G. Y.; Qi, P. F.; Wang, X. R.; Lu, Y. R.; Li, X. L.; Tu, R.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. J. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 2006, 314, 974-977.
Seo, K.; Park, K. A.; Kim, C.; Han, S.; Kim, B.; Lee, Y. H. Chirality- and diameter-dependent reactivity of NO2 on carbon nanotube walls. J. Am. Chem. Soc. 2005, 127, 15724-15729.
Yang, C. M.; An, K. H.; Park, J. S.; Park, K. A.; Lim, S. C.; Cho, S. H.; Lee, Y. S.; Park, W.; Park, C. Y.; Lee, Y. H. Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas. Phys. Rev. B 2006, 73, 075419.
Doyle, C. D.; Rocha, J. D. R.; Weisman, R. B.; Tour, J. M. Structure-dependent reactivity of semiconducting single-walled carbon nanotubes with benzenediazonium salts. J. Am. Chem. Soc. 2008, 130, 6795-6800.
Kalbáč, M.; Kavan, L.; Dunsch, L. Selective etching of thin single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 4529-4534.
Yu, B.; Liu, C.; Hou, P. X.; Tian, Y.; Li, S.; Liu, B.; Li, F.; Kauppinen, E. I.; Cheng, H. M. Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. J. Am. Chem. Soc. 2011, 133, 5232-5235.
Zhang, K.; Zhang, Q.; Liu, C.; Marzari, N.; Stellacci, F. Diameter effect on the sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. Adv. Funct. Mater. 2012, 22, 5216-5223.
Lebedkin, S.; Arnold, K.; Kiowski, O.; Hennrich, F.; Kappes, M. M. Raman study of individually dispersed single-walled carbon nanotubes under pressure. Phys Rev B 2006, 73, 094109.
Ding, L.; Zhou, W. W.; McNicholas, T. P.; Wang, J. Y.; Chu, H. B.; Li, Y.; Liu, J. Direct observation of the strong interaction between carbon nanotubes and quartz substrate. Nano Res. 2009, 2, 903-910.
Ozel, T.; Abdula, D.; Hwang, E.; Shim, M. Nonuniform compressive strain in horizontally aligned single-walled carbon nanotubes grown on single crystal quartz. ACS Nano 2009, 3, 2217-2224.
Soares, J. S.; Barros, E. B.; Shadmi, N.; Joselevich, E.; Jorio, A. Raman study of nanotube-substrate interaction using single-wall carbon nanotubes grown on crystalline quartz. Phys. Status Solidi B 2011, 248, 2536-2539.
Soares, J. S.; Barboza, A. P. M.; Araujo, P. T.; Barbosa, N. M.; Nakabayashi, D.; Shadmi, N.; Yarden, T.; Ismach, A.; Geblinger, N.; Joselevich, E. et al. Modulating the electronic properties along carbon nanotubes via tube-substrate interaction. Nano Lett. 2010, 10, 5043-5048.
Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110-1116.
Li, Y.; Cui, R. L.; Ding, L.; Liu, Y.; Zhou, W. W.; Zhang, Y.; Jin, Z.; Peng, F.; Liu, J. How catalysts affect the growth of single-walled carbon nanotubes on substrates. Adv. Mater. 2010, 22, 1508-1515.
Wang, C. J.; Cao, Q.; Ozel, T.; Gaur, A.; Rogers, J. A.; Shim, M. Electronically selective chemical functionalization of carbon nanotubes: Correlation between raman spectral and electrical responses. J. Am. Chem. Soc. 2005, 127, 11460-11468.
Nguyen, K. T.; Shim, M. Role of covalent defects on phonon softening in metallic carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 7103-7106.
Rao, A. M.; Eklund, P. C.; Bandow, S.; Thess, A.; Smalley, R. E. Evidence for charge transfer in doped carbon nanotube bundles from raman scattering. Nature 1997, 388, 257-259.
Shim, M.; Ozel, T.; Gaur, A.; Wang, C. J. Insights on charge transfer doping and intrinsic phonon line shape of carbon nanotubes by simple polymer adsorption. J. Am. Chem. Soc. 2006, 128, 7522-7530.
Tsang, J. C.; Freitag, M.; Perebeinos, V.; Liu, J.; Avouris, P. Doping and phonon renormalization in carbon nanotubes. Nat. Nanotechnol. 2007, 2, 725-730.
Cronin, S. B.; Swan, A. K.; Unlu, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance raman spectra of atomic-force-microscope modified single-wall nanotubes. Phys. Rev. Lett. 2004, 93, 167401.
Cronin, S. B.; Swan, A. K.; Unlu, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Resonant raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys. Rev. B 2005, 72, 035425.
Jay, A. H. The thermal expansion of quartz by x-ray measurements. Proc. R. Soc. London, Ser. A 1933, 142, 237-247.
Rosenholtz, J. L.; Smith, D. T. Linear thermal expansion and inversions of quartz, var. Rock crystal. Am. Mineral. 1941, 26, 103.
Jiang, H.; Liu, B.; Huang, Y.; Hwang, K. Thermal expansion of single wall carbon nanotubes. J. Eng. Mater. Technol. 2004, 126, 265-270.
Duan, X. J.; Son, H. B.; Gao, B.; Zhang, J.; Wu, T. J.; Samsonidze, G. G.; Dresselhaus, M. S.; Liu, Z. F.; Kong, J. Resonant raman spectroscopy of individual strained single-wall carbon nanotubes. Nano Lett. 2007, 7, 2116-2121.
Gao, B.; Duan, X. J.; Zhang, J.; Wu, T. J.; Son, H. B.; Kong, J.; Liu, Z. F. Raman spectral probing of electronic transition energy e-ii variation of individual swnts under torsional strain. Nano Lett. 2007, 7, 750-753.
Lee, S. W.; Jeong, G. H.; Campbell, E. E. B. In situ raman measurements of suspended individual single-walled carbon nanotubes under strain. Nano Lett. 2007, 7, 2590-2595.
Yang, W.; Wang, R. Z.; Yan, H. Strain-induced raman-mode shift in single-wall carbon nanotubes: Calculation of force constants from molecular-dynamics simulations. Phys. Rev. B 2008, 77, 195440.
Amer, M. S.; El-Ashry, M. M.; Maguire, J. F. Study of the hydrostatic pressure dependence of the raman spectrum of single-walled carbon nanotubes and nanospheres. J. Chem. Phys. 2004, 121, 2752-2757.
Yang, W.; Wang, R. Z.; Song, X. M.; Wang, B.; Yan, H. Pressure-induced raman-active radial breathing mode transition in single-wall carbon nanotubes. Phys. Rev. B 2007, 75, 045425.
Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47-99.
Guan, L. H.; Suenaga, K.; Shi, Z. J.; Gu, Z. N.; Iijima, S. Polymorphic structures of iodine and their phase transition in confined nanospace. Nano Lett. 2007, 7, 1532-1535.
Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754-1757.
Wang, J. Y.; Yang, J.; Zhang, D. Q.; Li, Y. Structure dependence of the intermediate-frequency raman modes in isolated single-walled carbon nanotubes. J. Phys. Chem. C 2012, 116, 23826-23832.
Lara, I. V.; Zanella, I.; Fagan, S. B. Functionalization of carbon nanotube by carboxyl group under radial deformation. Chem. Phys. 2014, 428, 117-120.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using castep. Z Kristallogr 2005, 220, 567-570.
Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
Perdew, J. P. Accurate density functional for the energy-real-space cutoff of the gradient expansion for the exchange hole. Phys. Rev. Lett. 1985, 55, 1665-1668.
Becke, A. D.; Edgecombe, K. E. A simple measure of electron localization in atomic and molecular-systems. J Chem. Phys. 1990, 92, 5397-5403.
Silvi, B.; Savin, A. Classification of chemical-bonds based on topological analysis of electron localization functions. Nature 1994, 371, 683-686.