Journal Home > Volume 8 , Issue 9

Graphene nanosheets possess a promising potential as electrodes in Li-ion batteries (LIBs); consequently, the development of low-cost and high-productivity synthetic approaches is crucial. Herein, porous graphene-like nanosheets (PGSs) have been synthesized from expandable graphite (EG) by initially intercalating phosphoric acid, and then performing annealing to enlarge the interlayer distance of EG, thus facilitating the successive intercalation of zinc chloride. Subsequently, the following pyrolysis of zinc chloride in the EG interlayer promoted the formation of the porous PGS structure; meanwhile, the gas produced during the formation of the porous structure could exfoliate the EG to graphene-like nanosheets. The synthetic PGS material used as LIB anode exhibited superior Li+ storage performance, showing a remarkable discharge capacity of 830.4 mAh·g-1 at 100 mA·g-1, excellent rate capacity of 211.6 mAh·g-1 at 20, 000 mA·g-1, and excellent cycle performance (near 100% capacity retention after 10, 000 cycles). The excellent rate performance is attributed to the Li+ ion rapid transport in porous structures and the high electrical conductivity of graphene-like nanosheets. It is expected that PGS may be widely used as anode material for high-rate LIBs via this facile and low-cost route by employing EG as the raw material.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries

Show Author's information Dongdong ZhaoLei WangPeng YuLu ZhaoChungui TianWei ZhouLei ZhangHonggang Fu( )
Laboratory of Functional Inorganic Material ChemistryMinistry of Education of the People's Republic of China, Heilongjiang UniversityHarbin150080China

Abstract

Graphene nanosheets possess a promising potential as electrodes in Li-ion batteries (LIBs); consequently, the development of low-cost and high-productivity synthetic approaches is crucial. Herein, porous graphene-like nanosheets (PGSs) have been synthesized from expandable graphite (EG) by initially intercalating phosphoric acid, and then performing annealing to enlarge the interlayer distance of EG, thus facilitating the successive intercalation of zinc chloride. Subsequently, the following pyrolysis of zinc chloride in the EG interlayer promoted the formation of the porous PGS structure; meanwhile, the gas produced during the formation of the porous structure could exfoliate the EG to graphene-like nanosheets. The synthetic PGS material used as LIB anode exhibited superior Li+ storage performance, showing a remarkable discharge capacity of 830.4 mAh·g-1 at 100 mA·g-1, excellent rate capacity of 211.6 mAh·g-1 at 20, 000 mA·g-1, and excellent cycle performance (near 100% capacity retention after 10, 000 cycles). The excellent rate performance is attributed to the Li+ ion rapid transport in porous structures and the high electrical conductivity of graphene-like nanosheets. It is expected that PGS may be widely used as anode material for high-rate LIBs via this facile and low-cost route by employing EG as the raw material.

Keywords: graphite, porous nanosheets, Li-ion battery, high-rate, graphene-like

References(74)

1

Wang, Y.; Cao, G. Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 2008, 20, 2251-2269.

2

Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419-2430.

3

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: Aperspective. J. Am. Chem. Soc. 2013, 135, 1167-1176.

4

Hassoun, J.; Bonaccorso, F.; Agostini, M.; Angelucci, M.; Betti, M. G.; Cingolani, R.; Gemmi, M; Mariani, C.; Panero, S.; Pellegrini, V. et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 2014, 14, 4901-4906.

5

Park, K. H.; Lee, D.; Kim, J.; Song, J.; Lee, Y. M.; Kim, H. -T.; Park, J. K. Defect-free, size-tunable graphene for high-performance lithium ion battery. Nano Lett. 2014, 14, 4306-4313.

6

Bogart, T. D.; Oka, D.; Lu, X. T.; Gu, M.; Wang, C. M.; Korgel, B. A. Lithium ion battery performance of silicon nanowires with carbon skin. ACS Nano 2014, 8, 915-922.

7

Zhang, G. Q.; Lou, X. W. General synthesis of multi-shelled mixed metal oxide hollow sphereswith superior lithium storage properties. Angew. Chem., Int. Ed. 2014, 53, 9041-9044.

8

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496-499.

9

Wu, Y. M.; Wen, Z. H.; Feng, H. B.; Li, J. H. Hollow porous LiMn2O4microcubes as rechargeable lithium battery cathode with high electrochemical performance. Small 2012, 8, 858-862.

10

Li, Y. M.; Lv, X. J.; Lu, J.; Li, J. H. Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J. Phys. Chem. C2010, 114, 21770-21774.

11

Wu, Y. M.; Wen, Z. H.; Li, J. H. Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv. Mater. 2011, 23, 1126-1129.

12

Cao, X. H.; Zheng, B.; Rui, X. H.; Shi, W. H.; Yan, Q. Y.; Zhang, H. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew. Chem., Int. Ed. 2014, 53, 1404-1409.

13

Shi, Q. H.; Liang, H. J.; Feng, D.; Wang, J. F.; Stucky, G. D. Porous carbon and carbon/metal oxide microfibers with well-controlled pore structure and interface. J. Am. Chem. Soc. 2008, 130, 5034-5035.

14

Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609-4613.

15

Sun, H.; He, X. M.; Ren, J. G.; Li, J. J.; Jiang, C. Y.; Wan, C. R. Hard carbon/lithium composite anode materials for Li-ion batteries. Electrochim. Acta 2007, 52, 4312-4316.

16

Jache, B.; Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of Co-intercalation phenomena. Angew. Chem., Int. Ed. 2014, 53, 10169-10173.

17

Yang, S. B.; Feng, X. L.; Zhi, L. J.; Cao, Q. A.; Maier, J.; Müllen, K. Nanographene-constructed hollow carbon spheresand their favorable electroactivity with respect to lithium storage. Adv. Mater. 2010, 22, 838-842.

18

Zhang, L.; Wu, H. B.; Lou, X. W. Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1300958.

19

Chen, J. S.; Lou, X. W. SnO2-based nanomaterials: Synthesis and applicationin lithium-ion batteries. Small 2013, 9, 1877-1893.

20

Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 2012, 4, 2526-2542.

21

Erickson, E. M.; Ghanty, C.; Aurbach, D. New horizons for conventional lithium ion battery technology. J. Phys. Chem. Lett. 2014, 5, 3313-3324.

22

Hwang, H. J.; Koo, J.; Park, M.; Park, N.; Kwon, Y.; Lee, H. Multilayer graphynes for lithium ion battery anode. J. Phys. Chem. C2013, 117, 6919-6923.

23

Liu, Y.; Fan, F. F.; Wang, J. W.; Liu, Y.; Chen, H. L.; Jungjohann, K. L.; Xu, Y. H.; Zhu, Y. J.; Bigio, D.; Zhu, T. et al. In situtransmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. Nano Lett. 2014, 14, 3445-3452.

24

Wu, D. Q.; Zhang, F.; Liangab, H. W.; Feng, X. L. Nanocomposites and macroscopic materials: Assembly of chemicallymodified graphenesheets. Chem. Soc. Rev. 2012, 41, 6160-6177.

25

Wu, Z. -S.; Sun, Y.; Tan, Y. -Z.; Yang, S. B.; Feng, X. L.; Müllen, K. Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 2012, 134, 19532-19535.

26

Shi, Y. F.; Wan, Y.; Zhao, D. Y. Ordered mesoporous non-oxide materials. Chem. Soc. Rev. 2011, 40, 3854-3878.

27

Hellstrom, S. L.; Vosgueritchian, M.; Stoltenberg, R. M.; Irfan, I.; Hammock, M.; Wang, Y. B.; Jia, C. C.; Guo, X. F.; Gao, Y. L.; Bao, Z. N. Strong and stable doping of carbon nanotubes and graphene byMoOx for transparent electrodes. Nano Lett. 2012, 12, 3574-3580.

28

Pei, L. K.; Jin, Q.; Zhu, Z. Q.; Zhao, Q.; Liang, J.; Chen, J. Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in threedimensional graphene. Nano Res. 2015, 8, 184-192.

29

Zhou, D. -D.; Li, W. -Y.; Dong, X. -L.; Wang, Y. -G.; Wang, C. -X.; Xia, Y. -Y. A nitrogen-doped ordered mesoporous carbonnanofiber array for supercapacitors. J. Mater. Chem. A2013, 1, 8488-8496.

30

Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes and nanosheets. ACS Nano 2010, 4, 2979-2993.

31

Wang, L.; He, X. M.; Li, J. J.; Sun, W. T.; Gao, J.; Guo, J. W.; Jiang, C. Y. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem., Int. Ed. 2012, 51, 9034-9037.

32

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

33

Kaskhedikar, N. A.; Maier, J. Lithium storage in carbon nanostructures. Adv. Mater. 2009, 21, 2664-2680.

34

Sun, Z. H.; Chang, H. X. Graphene and graphene-like two-dimensional materials in photodetection: Mechanismsand methodology. ACS Nano 2014, 8, 4133-4156.

35

Wu, Z. X.; Li, W.; Xia, Y. Y.; Webley, P.; Zhao, D. Y. Ordered mesoporous graphitized pyrolytic carbon materials: Synthesis, graphitization, and electrochemical properties. J. Mater. Chem. 2012, 22, 8835-8845.

36

Park, J. -S.; Lee, M. -H.; Jeon, I. -Y.; Park, H. -S.; Baek, J. -B.; Song, H. -K. Edge-exfoliated graphites for facile kinetics of delithiation. ACS Nano 2012, 6, 10770-10775.

37

Fan, Z. J.; Liu, Y.; Yan, J.; Ning, G. Q.; Wang, Q.; Wei, T.; Zhi, L. J.; Wei, F. Template-directed synthesis of pillared-porous carbon nanosheet architectures: High-performance electrode materials for supercapacitors. Adv. Energy Mater. 2012, 2, 419-424.

38

Huang, C. -H.; Zhang, Q.; Chou, T. -C.; Chen, C. -M.; Su, D. S.; Doong, R. -A. Three-dimensional hierarchically ordered porous carbons with partially graphitic nanostructures for electrochemical capacitive energy storage. ChemSusChem 2012, 5, 563-571.

39

Wang, L.; Sun, L.; Tian, C. G.; Tan, T. X.; Mu, G.; Zhang, H. X.; Fu, H. G. A novel soft template strategy to fabricate mesoporous carbon/graphene composites as high-performance supercapacitor electrodes. RSC Adv. 2012, 2, 8359-8367.

40

Hassoun, J.; Bonaccorso, F.; Agostini, M.; Angelucci, M.; Betti, M. G.; Cingolani, R.; Gemmi, M.; Mariani, C.; Panero, S.; Pellegrini, V. et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 2014, 14, 4901-4906.

41

Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806-4814.

42

Chen, Z. -L.; Kam, F. -Y.; Goh, R. G. -S.; Song, J.; Lim, G. -K.; Chua, L. -L. Influence of graphite source on chemical oxidative reactivity. Chem. Mater. 2013, 25, 2944-2949.

43

Zheng, R. T.; Gao, J. W.; Wang, J. J.; Feng, S. -P.; Ohtani, H.; Wang, J. B.; Chen, G. Thermal percolation in stable graphite suspensions. Nano Lett. 2012, 12, 188-192.

44

Wang, L.; Mu, G.; Tian, C. G.; Sun, L.; Zhou, W.; Tan, T. X.; Fu, H. G. In situ intercalating expandable graphite for mesoporous carbon/graphite nanosheet composites as high-performance supercapacitor electrodes. ChemSusChem 2012, 5, 2442-2450.

45

Wang, L.; Tian, C. G.; Wang, B. L.; Wang, R. H.; Zhou, W. Fu, H. G. Controllable synthesis of graphitic carbon nanostructures from ion-exchange resin-iron complex via solid-state pyrolysis process. Chem. Commun. 2008, 42, 5411-5413.

46

Wang, L.; Yu, P.; Zhao, L.; Tian, C. G.; Zhao, D. D.; Zhou, W.; Yin, J.; Wang, R. H.; Fu, H. G. B and N isolate-doped graphitic carbon nanosheets from nitrogen-containing ion-exchanged resins for enhanced oxygen reduction. Sci. Rep. 2014, 4, 5184.

47

Chakraborty, I.; Bodurtha, K. J.; Heeder, N. J.; Godfrin, M. P.; Tripathi, A.; Hurt, R. H.; Shukla, A.; Bose., A. Massive electrical conductivity enhancement of multilayer graphene/polystyrene composites using a nonconductive filler. ACS Appl. Mater. Interfaces 2014, 6, 16472-16475.

48

Ghosh, T.; Biswas, C.; Oh, J.; Arabale, G.; Hwang, T.; Luong, N. D.; Jin, M.; Lee, Y. H.; Nam J. D. Solution-processed graphite membrane from reassembled graphene oxide. Chem. Mater. 2012, 24, 594-599.

49

Sun, B.; Huang, X. D.; Chen, S. Q.; Munroe, P.; Wang, G. X. Porous graphene nanoarchitectures: An efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries. Nano Lett. 2014, 14, 3145-3152.

50

Wang, X.; Weng, Q.; Liu, X. Z.; Wang, X. B.; Tang, D. -M.; Tian, W.; Zhang, C.; Yi, W.; Liu, D. Q.; Bando, Y. et al. Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage. Nano Lett. 2014, 14, 1164-1171.

51

Xu, C.; Zeng, Y.; Rui, X. H.; Xiao, N.; Zhu, J. X.; Zhang, W. Y.; Chen, J.; Liu, W. L.; Tan, H. T.; Hng, H. H. et al. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance. ACS Nano 2012, 6, 4713-4721.

52

Fei, L.; Lin, Q. L.; Yuan, B.; Chen, G.; Xie, P.; Li, Y. L.; Xu, Y.; Deng, S. G.; Smirnov, S.; Luo, H. M. Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance. ACS Appl. Mater. Interfaces 2013, 5, 5330-5335.

53

Pan, D. Y.; Wang, S.; Zhao, B.; Wu, M. H.; Zhang, H. J.; Wang, Y.; Jiao, Z. Li storage properties of disordered graphene nanosheets. Chem. Mater. 2009, 21, 3136-3142.

54

Fu, L. J.; Tang, K.; Song, K. P.; van Aken, P. A.; Yu, Y.; Maier, J. Nitrogen doped porous carbon fibers as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 2014, 6, 1384-1389.

55

Wang, Z. H.; Qie, L.; Yuan, L. X.; Zhang, W. X.; Hu, X. L.; Huang, Y. H. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 2013, 55, 328-334.

56

Chen, Y. M.; Li, X. Y.; Park, K.; Song, J.; Hong, J. H.; Zhou, L. M.; Mai, Y. -W.; Huang, H. T.; Goodenough, J. B. Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 16280-16283.

57

Tian, W. -Q.; Wu, X. -Y.; Wang, K. -X.; Jiang, Y. -M.; Wang, J. -F.; Chen, J. -S. Hierarchical porous carbon spheres as an anode material for lithium ion batteries. RSC Adv. 2013, 3, 10823-10827.

58

Xiang, H. F.; Li, Z. D.; Xie, K.; Jiang, J. Z.; Chen, J. J.; Lian, P. C.; Wu, J. S.; Yu, Y.; Wang, H. H. Graphene sheets as anode materials for Li-ion batteries: Preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv. 2012, 2, 6792-6799.

59

Lotfabad, E. M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W. P.; Hazelton M.; Mitlin, D. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 2014, 8, 7115-7129.

60

Fei, L.; Xu, Y.; Wu, X. F.; Chen, G.; Li, Y. L.; Li, B. S.; Deng, S. G.; Smirnov, S.; Fan, H. Y.; Luo, H. M. Instant gelation synthesis of 3D porous MoS2@C nanocomposites for lithium ion batteries. Nanoscale 2014, 6, 3664-3669.

61

Wang, L. L.; Zhu, Y. C.; Guo, C.; Zhu, X. B.; Liang J. W.; Qian, Y. T. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries. ChemSusChem 2014, 7, 87-91.

62

Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537-1541.

63

Yang, S. B.; Feng, X. L.; Wang, L.; Tang, K.; Maier, J.; Müllen, K. Graphene-based nanosheets with a sandwich structure. Angew. Chem., Int. Ed. 2010, 49, 4795-4799.

64

Zheng, H.; Park, D. -Y.; Kim, M. -S. Preparation and characterization of anode materialsusing expanded graphite/pitch composite for highpowerLi-ion secondary batteries. Res. Chem. Intermed. 2014, 40, 2501-2507.

65

Fukuda, K.; Kikuya, K.; Isono, K.; Yoshio, M. Foliated natural graphite as the anode material forrechargeable lithium-ion cells. J. Power Sources 1997, 69, 165-168.

66

Bai, L. -Z.; Zhao, D. -L.; Zhang, T. -M.; Xie, W. -G.; Zhang, J. -M.; Shen, Z. -M. A comparative study of electrochemical performance of graphenesheets, expanded graphite and natural graphite as anode materials forlithium-ion batteries. Electrochimica Acta 2013, 107, 555-561.

67

Lin, Y. X.; Huang, Z. -H.; Yu, X. L.; Shen, W. C.; Zheng, Y. P.; Kang, F. Y. Mildly expanded graphite for anode materials of lithium ion batterysynthesized with perchloric acid. Electrochimica Acta 2014, 116, 170-174.

68

Qie, L.; Chen, W. -M.; Wang, Z. -H.; Shao, Q. -G.; Li, X.; Yuan, L. -X.; Hu, X. -L.; Zhang, W. -X.; Huang, Y. -H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047-2050.

69

Wang, B.; Li, X. L.; Qiu, T. F.; Luo, B.; Ning, J.; Li, J.; Zhang, X. F.; Liang, M. H.; Zhi, L. J. High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering. Nano Lett. 2013, 13, 5578-5584.

70

Liu, H.; Su, D. W.; Zhou, R. F.; Sun, B.; Wang, G. X.; Qiao, S. Z. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2012, 2, 970-975.

71

Xiao, Y.; Sun, P. P.; Cao, M. H. Core-shell bimetallic carbide nanoparticles confined in a three-dimensional N-doped carbon conductive network for efficient lithium storage. ACS Nano 2014, 8, 7846-7857.

72

Wang, L.; Mu, G.; Tian, C. G.; Sun, L.; Zhou, W.; Yu, P.; Yin, J.; Fu, H. G. Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. ChemSusChem 2013, 6, 880-889.

73

Tian, L. -L.; Wei, X. -Y.; Zhuang, Q. -C.; Jiang, C. -H.; Wu, C.; Ma, G. -Y.; Zhao, X.; Zong, Z. -M.; Sun, S. -G. Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage. Nanoscale 2014, 6, 6075-6083.

74

Zhu, Z. Q.; Wang, S. W.; Du, J.; Jin, Q.; Zhang, T. R.; Cheng, F. Y.; Chen, J. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon As high-performance anode for lithium-ion batteries. Nano Lett. 2014, 14, 153-157.

File
nr-8-9-2998_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 March 2015
Revised: 15 April 2015
Accepted: 24 April 2015
Published: 30 July 2015
Issue date: September 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

We gratefully acknowledge the support of this research by the Key Program of the National Natural Science Foundation of China (No. 21031001), the National Natural Science Foundation of China (Nos. 21401048, 21371053, and 21376065), the China Postdoctoral Science Foundation (No. 2014M551285), the Cultivation Fund of the Key Scientific and Technical Innovation Project, the Ministry of Education of China (No. 708029), Innovative Research Team in University (No. IRT-1237), the Postdoctoral Science Foundation of Heilongjiang Province (No. LBH-TZ0519), the Natural Science Foundation of Heilongjiang Province (No. QC2014C007), the Heilongjiang University Youth Foundation (No. QL201303).

Return