Journal Home > Volume 8 , Issue 9

We developed and demonstrated a ZnO/ZnS/Au composite photoanode with significantly enhanced photoelectrochemical water-splitting performance, containing a ZnS interlayer and Au nanoparticles. The solar-to-hydrogen conversion efficiency of this ZnO/ZnS/Au heterostructure reached 0.21%, 3.5 times that of pristine ZnO. The comparison of the incident photon-to-current efficiency (IPCE) and the photoresponse in the white and visible light regions further verified that the enhancement resulted from contributions of both UV and visible light. The modification of the Au NPs was shown to improve the photoelectrochemical (PEC) performance to both UV and visible light, as modification encouraged effective surface passivation and surface-plasmonresonance effects. The ZnS interlayer favored the movement of photogenerated electrons under UV light and hot electrons under visible light, causing their injection into ZnO; this simultaneously suppressed the electron-hole recombination at the photoanode-electrolyte interface. The optimized design of the interlayer within plasmonic metal/semiconductor composite systems, as reported here, provided a facile and compatible photoelectrode configuration, enhancing the utilization efficiency of incident light for photoelectrochemical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting

Show Author's information Yichong Liu1Yousong Gu1Xiaoqin Yan1Zhuo Kang1Shengnan Lu1Yihui Sun1Yue Zhang1,2( )
State Key Laboratory for Advanced Metals and MaterialsSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083China
Key Laboratory of New Energy Materials and TechnologiesUniversity of Science and Technology BeijingBeijing100083China

Abstract

We developed and demonstrated a ZnO/ZnS/Au composite photoanode with significantly enhanced photoelectrochemical water-splitting performance, containing a ZnS interlayer and Au nanoparticles. The solar-to-hydrogen conversion efficiency of this ZnO/ZnS/Au heterostructure reached 0.21%, 3.5 times that of pristine ZnO. The comparison of the incident photon-to-current efficiency (IPCE) and the photoresponse in the white and visible light regions further verified that the enhancement resulted from contributions of both UV and visible light. The modification of the Au NPs was shown to improve the photoelectrochemical (PEC) performance to both UV and visible light, as modification encouraged effective surface passivation and surface-plasmonresonance effects. The ZnS interlayer favored the movement of photogenerated electrons under UV light and hot electrons under visible light, causing their injection into ZnO; this simultaneously suppressed the electron-hole recombination at the photoanode-electrolyte interface. The optimized design of the interlayer within plasmonic metal/semiconductor composite systems, as reported here, provided a facile and compatible photoelectrode configuration, enhancing the utilization efficiency of incident light for photoelectrochemical applications.

Keywords: ZnO, Au, photoanode, photoelectrochemical water splitting, ZnS

References(39)

1

Liu, J.; Zhang, H. C.; Tang, D.; Zhang, X.; Yan, L. K.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum dot/silver nanoparticle/polyoxometalate composites as photocatalysts for overall water splitting in visible light. Chemcatchem 2014, 6, 2634–2641.

2

Sun, S. M.; Wang, W. Z.; Jiang, D.; Zhang, L.; Li, X. M.; Zheng, Y. L.; An, Q. Bi2WO6 quantum dot–intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance. Nano Res. 2014, 7, 1497–1506.

3

Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R.; Dai, H. J. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921–928.

4

Wang, M. Y.; Sun, L.; Lin, Z. Q.; Cai, J. H.; Xie, K. P.; Lin, C. J. p–n heterojunction photoelectrodes composed of Cu2O–loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy Environ. Sci. 2013, 6, 1211–1220.

5

Wheeler, D. A.; Wang, G. M.; Ling, Y. C.; Li, Y.; Zhang, J. Z. Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 2012, 5, 6682–6702.

6

Cho, I. S.; Chen, Z. B.; Forman, A. J.; Kim, D. R.; Rao, P. M.; Jaramillo, T. F.; Zheng, X. L. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 2011, 11, 4978–4984.

7

Qiu, Y. C.; Yan, K. Y.; Deng, H.; Yang, S. H. Secondary branching and nitrogen doping of ZnO nanotetrapods: Building a highly active network for photoelectrochemical water splitting. Nano Lett. 2012, 12, 407–413.

8

Hou, J. G.; Yang, C.; Cheng, H. J.; Jiao, S. Q.; Takeda, O.; Zhu, H. M. High–performance p–Cu2O/n–TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting. Energy Environ. Sci. 2014, 7, 3758–3768.

9

Kang, Z.; Gu, Y. S.; Yan, X. Q.; Bai, Z. M.; Liu, Y. C.; Liu, S.; Zhang, X. H.; Zhang, Z.; Zhang, X. J.; Zhang, Y. Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self– powered biosensing application. Biosens. Bioelectron. 2015, 64, 499–504.

10

Bai, Z. M.; Yan, X. Q.; Kang, Z.; Hu, Y. P.; Zhang, X. H.; Zhang, Y. Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn2S4 nanosheets coating. Nano Energy 2014, 14, 392–400.

11

Kang, Z.; Yan, X. Q.; Wang, Y. F.; Bai, Z. M.; Liu, Y. C.; Zhang, Z.; Lin, P.; Zhang, X. H.; Yuan, H. G.; Zhang, X. J. et al. Electronic structure engineering of Cu2O film/ZnO nanorods array all–oxide p–n heterostructure for enhanced photoelectrochemical property and self–powered biosensing application. Sci. Rep. 2015, 5, 7882.

12

Zhang, X.; Wang, F.; Huang, H.; Li, H. T.; Han, X.; Liu, Y.; Kang, Z. H. Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light. Nanoscale 2013, 5, 2274–2278.

13

Wang, M.; Ren, F.; Cai, G. X.; Liu, Y. C.; Shen, S. H.; Guo, L. J. Activating ZnO nanorod photoanodes in visible light by Cu ion implantation. Nano Res. 2014, 7, 353–364.

14

Kaidashev, E. M.; Lorenz, M.; von Wenckstern, H.; Rahm, A.; Semmelhack, H. C.; Han, K. H.; Benndorf, G.; Bundesmann, C.; Hochmuth, H.; Grundmann, M. High electron mobility of epitaxial ZnO thin films on c–plane sapphire grown by multistep pulsed–laser deposition. Appl. Phys. Lett. 2003, 82, 3901–3903.

15

Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.

16

Dai, Y.; Zhang, Y; Bai, Y. Q.; Wang, Z. L. Bicrystalline zinc oxide nanowires. Chem. Phys. Lett. 2003, 375, 96–101.

17

Dai, Y.; Zhang, Y.; Wang, Z. L.; The octa–twin tetraleg ZnO nanostructures. Solid State Commun. 2003, 126, 629–633.

18

Lu, S. N.; Qi, J. J.; Liu, S.; Zhang, Z.; Wang, Z. Z.; Lin, P.; Liao, Q. L.; Liang, Q. J.; Zhang, Y. Piezotronic interface engineering on ZnO/Au–based Schottky junction for enhanced photoresponse of a flexible self–powered UV detector. ACS Appl. Mater. Interfaces. 2014, 6, 14116–14122.

19

Pu, Y. C.; Qi, J. J.; Liu, S.; Zhang, Z.; Wang, Z. Z.; Lin, P.; Liao, Q. L.; Liang, Q. J.; Zhang, Y. Au nanostructure– decorated TiO2 nanowires exhibiting photoactivity across entire UV–visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817–3823.

20

Zhang, Z. H.; Zhang, L. B.; Hedhili, M. N.; Zhang, H. N.; Wang, P. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 2013, 13, 14–20.

21

Azevedo, J.; Steier, L.; Dias, P.; Stefik, M.; Sousa, C. T.; Araujo, J. P.; Mendes, A.; Graetzel, M.; Tilley, S. D. On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing. Energy Environ. Sci. 2014, 7, 4044–4052.

22

Zhang, X.; Liu, Y.; Lee, S. T.; Yang, S. H.; Kang, Z. H. Coupling surface plasmon resonance of gold nanoparticles with slow–photon–effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy Environ. Sci. 2014, 7, 1409–1419.

23

Warren, S. C.; Thimsen, E. Plasmonic solar water splitting. Energy Environ. Sci. 2012, 5, 5133–5146.

24

Chen, H. M.; Chen, C. K.; Chen, C. J.; Cheng, L. C.; Wu, P. C.; Cheng, B. H.; Hou, Y. Z.; Tseng, M. L.; Hsu, Y. Y.; Chan, T. S. Plasmon inducing effects for enhanced photoelectrochemical water splitting: X–ray absorption approach to electronic structures. ACS Nano 2012, 6, 7362–7372.

25

Wu, M.; Chen, W. J.; Shen, Y. H.; Huang, F. Z.; Li, C. H.; Li, S. K. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 15052– 15060.

26

Zhang, X., Y.; Liu, Y.; Kang, Z. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high– performance photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 4480–4489.

27

Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic–metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.

28

Hou, W.; Cronin, S. B. A review of surface plasmon resonance–enhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619.

29

Guo, P. H.; Jiang, J. G.; Shen, S. H.; Guo, L. J. ZnS/ZnO heterojunction as photoelectrode: Type Ⅱ band alignment towards enhanced photoelectrochemical performance. Inter. J. Hydrogen Energ. 2013, 38, 13097–13103.

30

Jiang, J. G.; Wang, M.; Ma, L. J.; Chen, Q. Y.; Guo, L. J. Synthesis of uniform ZnO/ZnS/CdS nanorod films with ion–exchange approach and photoelectrochemical performances. Inter. J. Hydrogen Energ. 2013, 38, 13077–13083.

31

Kushwaha, A.; Aslam, M. ZnS shielded ZnO nanowire photoanodes for efficient water splitting. Electrochimica Acta 2014, 130, 222–231.

32

Zhang, Z.; Liao, Q. L.; Yu, Y. H.; Wang, X. D.; Zhang, Y. Enhanced photoresponse of ZnO nanorods–based self–powered photodetector by piezotronic interface engineering. Nano Energ. 2014, 9, 237–244.

33

Chen, X.; Bai, Z. M.; Yan, X. Q.; Yuan, H. G.; Zhang, G. J.; Lin, P.; Zhang, Z.; Liu, Y. C.; Zhang, Y. Design of efficient dye–sensitized solar cells with patterned ZnO–ZnS core–shell nanowire array photoanodes. Nanoscale 2014, 6, 4691–4697.

34

Mallick, K.; Wang, Z. L.; Pal, T. Seed–mediated successive growth of gold particles accomplished by UV irradiation: A photochemical approach for size–controlled synthesis. J. Photoch. Photobio. A 2001, 140, 75–80.

35

Hoang, S.; Guo, S. W.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Visible light driven photoelectrochemical water oxidation on nitrogen–modified TiO2 nanowires. Nano Lett. 2012, 12, 26–32.

36

Wang, G. M.; Ling, Y. C.; Lu, X. H.; Zhai, T.; Qian, F.; Tong, Y. X.; Li, Y. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale 2013, 5, 4129–4133.

37

Schrier, J.; Demchenko, D. O.; Wang, L. W. Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett. 2007, 7, 2377–2282.

38

Liu, L. Z.; Chen, Y. Q.; Guo, T. B.; Zhu, Y. Q.; Su, Y.; Jia, C.; Wei, M. Q.; Cheng, Y. F. Chemical conversion synthesis of ZnS shell on ZnO nanowire arrays: Morphology evolution and its effect on dye–sensitized solar cell. ACS Appl. Mater. Interfaces 2012, 4, 17–23.

39

Liu, W.; Wang, R. M.; Wang, N. From ZnS nanobelts to ZnO/ZnS heterostructures: Microscopy analysis and their tunable optical property. Appl. Phys. Lett. 2010, 97, 041916.

File
nr-8-9-2891_ESM.pdf (680.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 January 2015
Revised: 30 March 2015
Accepted: 14 April 2015
Published: 24 July 2015
Issue date: September 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2013CB932601), the Major Project of International Cooperation and Exchanges (No. 2012DFA50990), the Program of Introducing Talents of Discipline to Universities (No. B14003), the National Natural Science Foundation of China (Nos. 51232001, 51172022, 51372023, and 31371203), the Research Fund of Co-construction Program from Beijing Municipal Commission of Education, the Fundamental Research Funds for the Central Universities, the Program for Changjiang Scholars and Innovative Research Team in University.

Return