Journal Home > Volume 8 , Issue 9

We demonstrate a facile method combining colloidal lithography, selective ion-exchange, and the in situ reduction of Ag ions (Ag+) for the fabrication of multi-segmented barcode nanorods. First, polymer multilayer films were prepared by spin-coating alternating thin films of polystyrene and polyacrylic acid (PAA), and then multi-segmented polymer nanorods were fabricated via reactive ion etching with colloidal masks. Second, Ag nanoparticles (Ag NPs) were incorporated into the PAA segments by an ion exchange and the in situ reduction of the Ag+. The selective incorporation of the Ag NPs permitted the modification of the specific bars of the nanorods. Lastly, the Ag NP/polymer composite nanorods were released from the substrate to form suspensions for further coding applications. By increasing the number of segments and changing the length of each segment in the nanorods, the coding capacity of nanorods was improved. More importantly, this method can easily realize the density tuning of Ag NPs in different segments of a single nanorod by varying the composition of the PAA segments. We believe that numerous other coded materials can also be obtained, which introduces new approaches for fabricating barcoded nanomaterials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ag nanoparticle/polymer composite barcode nanorods

Show Author's information Hongxu Chen1Tieqiang Wang2Huaizhong Shen1Wendong Liu1Shuli Wang1Kun Liu1Junhu Zhang1( )Bai Yang1
State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
Department of ChemistryCollege of SciencesNortheastern UniversityShenyang110004China

Abstract

We demonstrate a facile method combining colloidal lithography, selective ion-exchange, and the in situ reduction of Ag ions (Ag+) for the fabrication of multi-segmented barcode nanorods. First, polymer multilayer films were prepared by spin-coating alternating thin films of polystyrene and polyacrylic acid (PAA), and then multi-segmented polymer nanorods were fabricated via reactive ion etching with colloidal masks. Second, Ag nanoparticles (Ag NPs) were incorporated into the PAA segments by an ion exchange and the in situ reduction of the Ag+. The selective incorporation of the Ag NPs permitted the modification of the specific bars of the nanorods. Lastly, the Ag NP/polymer composite nanorods were released from the substrate to form suspensions for further coding applications. By increasing the number of segments and changing the length of each segment in the nanorods, the coding capacity of nanorods was improved. More importantly, this method can easily realize the density tuning of Ag NPs in different segments of a single nanorod by varying the composition of the PAA segments. We believe that numerous other coded materials can also be obtained, which introduces new approaches for fabricating barcoded nanomaterials.

Keywords: colloidal lithography, nanoparticle/polymer composites, nanorod, barcode

References(38)

1

Huang, X. N.; Huang, G.; Zhang, S. R.; Sagiyama, K.; Togao, O.; Ma, X. P.; Wang, Y. G.; Li, Y.; Soesbe, T. C.; Sumer, B. D. et al. Multi-chromatic pH-activatable 19F-MRI nanoprobes with binary ON/OFF pH transitions and chemical-shift barcodes. Angew. Chem., Int. Ed. 2013, 52, 8074-8078.

2

Wilson, R.; Cossins, A. R.; Spiller, D. G. Encoded microcarriers for high-throughput multiplexed detection. Angew. Chem., Int. Ed. 2006, 45, 6104-6017.

3

Finkel, N. H.; Lou, X. H.; Wang, C. Y.; He, L. Barcoding the microworld. Anal. Chem. 2004, 76, 352A-359A.

4

Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. M. Quantum- dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001, 19, 631-635.

5

Pregibon, D. C.; Toner, M.; Doyle, P. S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 2007, 315, 1393-1396.

6

Gershon, D. Microarray technology: An array of opportunities. Nature 2002, 416, 885-891.

7

Nicewarner-Peña, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Peña, D. J.; Walton, I. D.; Cromer, R.; Keating, C. D.; Natan, M. J. Submicrometer metallic barcodes. Science 2001, 294, 137-141.

8

Birtwell, S.; Morgan, H. Microparticle encoding technologies for high-throughput multiplexed suspension assays. Integr. Biol. 2009, 1, 345-362.

9

Banholzer, M. J.; Millstone, J. E.; Qin, L. D.; Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 885-897.

10

Zhang, Y.; Wang, H.; Nie, J. F.; Zhou, H.; Shen, G. L.; Yu, R. Q. Mussel-inspired fabrication of encoded polymer films for electrochemical identification. Electrochem. Commun. 2009, 11, 1936-1939.

11

Stoermer, R. L.; Cederquist, K. B.; McFarland, S. K.; Sha, M. Y.; Penn, S. G.; Keating, C. D. Coupling molecular beacons to barcoded metal nanowires for multiplexed, sealed chamber DNA bioassays. J. Am. Chem. Soc. 2006, 128, 16892-16903.

12

Qin, L. D.; Banholzer, M. J.; Millstone, J. E.; Mirkin, C. A. Nanodisk codes. Nano Lett. 2007, 7, 3849-3853.

13

Nam, J. M.; Thaxton, C. S.; Mirkin, C. A. Nanoparticle-based bio-barcodes for the ultrasensitive detection of proteins. Science 2003, 301, 1884-1886.

14

Tok, J. B. -H.; Chuang, F. Y. S.; Kao, M. C.; Rose, K. A.; Pannu, S. S.; Sha, M. Y.; Chakarova, G.; Penn, S. G.; Dougherty, G. M. Metallic striped nanowires as multiplexed immunoassay platforms for pathogen detection. Angew. Chem., Int. Ed. 2006, 45, 6900-6904.

15

Eastman, P. S.; Ruan, W. M.; Doctolero, M.; Nuttall, R.; de Feo, G.; Park, J. S.; Chu, J. S. F.; Cooke, P.; Gray, J. W.; Li, S. et al. Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett. 2006, 6, 1059-1064.

16

Wang, J. Barcoded metal nanowires. J. Mater. Chem. 2008, 18, 4017-4020.

17

Zhao, Y. J.; Shum, H. C.; Chen, H. S.; Adams, L. L. A.; Gu, Z. Z.; Weitz, D. A. Microfluidic generation of multifunctional quantum dot barcode particles. J. Am. Chem. Soc. 2011, 133, 8790-8793.

18

Seo, D.; Yoo, C. I.; Jung, J.; Song, H. Ag-Au-Ag heterometallic nanorods formed through directed anisotropic growth. J. Am. Chem. Soc. 2008, 130, 2940-2941.

19

Rauf, S.; Glidle, A.; Cooper, J. M. Production of quantum dot barcodes using biological self-assembly. Adv. Mater. 2009, 21, 4020-4024.

20

Battersby, B. J.; Bryant, D.; Meutermans, W.; Matthews, D.; Smythe, M. L.; Trau, M. Toward larger chemical libraries: Encoding with fluorescent colloids in combinatorial chemistry. J. Am. Chem. Soc. 2000, 122, 2138-2139.

21

Kuang, M.; Wang, D. Y.; Bao, H. B.; Gao, M. Y.; Möhwald, H.; Jiang, M. Fabrication of multicolor-encoded microspheres by tagging semiconductor nanocrystals to hydrogel spheres. Adv. Mater. 2005, 17, 267-270.

22

Dejneka, M. J.; Streltsov, A.; Pal, S.; Frutos, A. G.; Powell, C. L.; Yost, K.; Yuen, P. K.; Müller, U.; Lahiri, J. Rare earth-doped glass microbarcodes. Proc. Natl. Acad. Sci. USA 2003, 100, 389-393.

23

Hurst, S. J.; Payne, E. K.; Qin, L. D.; Mirkin, C. A. Multisegmented one-dimensional nanorods prepared by hard- template synthetic methods. Angew. Chem., Int. Ed. 2006, 45, 2672-2692.

24

Sattayasamitsathit, S.; Burdick, J.; Bash, R.; Kanatharana, P.; Thavarungkul, P.; Wang, J. Alloy nanowires barcodes based on nondestructive X-ray fluorescence readout. Anal. Chem. 2007, 79, 7571-7575.

25

Wanekaya, A. K.; Chen, W.; Myung, N. V.; Mulchandani, A. Nanowire-based electrochemical biosensors. Electroanalysis 2006, 18, 533-550.

26

Li, X.; Wang, T. Q.; Zhang, J. H.; Zhu, D. F.; Zhang, X.; Ning, Y.; Zhang, H.; Yang, B. Controlled fabrication of fluorescent barcode nanorods. ACS Nano 2010, 4, 4350-4360.

27

Zhao, Y. J.; Cheng, Y.; Shang, L. R.; Wang, J.; Xie, Z. Y.; Gu, Z. Z. Microfluidic synthesis of barcode particles for multiplex assays. Small 2015, 11, 151-174.

28

Zhang, Y. H.; Zhang, L. X.; Deng, R. R.; Tian, J.; Zong, Y.; Jin, D. Y.; Liu, X. G. Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc. 2014, 136, 4893- 4896.

29

Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607-609.

30

Service, R. F. Solar energy. Can the upstarts top silicon? Science 2008, 319, 718-720.

31

Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249-4269.

32

Zhang, J. H.; Yang, B. Patterning colloidal crystals and nanostructure arrays by soft lithography. Adv. Funct. Mater. 2010, 20, 3411-3424.

33

Kim, Y. W.; Lee, D. K.; Lee, K. J.; Min, B. R.; Kim, J. H. In situ formation of silver nanoparticles within an amphiphilic graft copolymer film. J. Polym. Sci., Part B: Polym. Phys. 2007, 45, 1283-1290.

34

Chen, M. J.; Zhao, Y. N.; Yang, W. T.; Yin, M. Z. UV- irradiation-induced templated/in-situ formation of ultrafine silver/polymer hybrid nanoparticles as antibacterial. Langmuir 2013, 29, 16018-16024.

35

Cocca, M.; D'Orazio, L. Novel silver/polyurethane nanocomposite by in situ reduction: Effects of the silver nanoparticles on phase and viscoelastic behavior. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 344-350.

36

Gupta, S.; Uhlmann, P.; Agrawal, M.; Chapuis, S.; Oertel, U.; Stamm, M. Immobilization of silver nanoparticles on responsive polymer brushes. Macromolecules 2008, 41, 2874-2879.

37

Henglein, A.; Giersig, M. Formation of colloidal silver nanoparticles: Capping action of citrate. J. Phys. Chem. B 1999, 103, 9533-9539.

38

Deshmukh, R. D.; Composto, R. J. Surface segregation and formation of silver nanoparticles created in situ in poly(methyl methacrylate) films. Chem. Mater. 2007, 19, 745-754.

File
nr-8-9-2871_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 January 2015
Revised: 07 April 2015
Accepted: 14 April 2015
Published: 06 August 2015
Issue date: September 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2012CB933800), the National Natural Science Foundation of China (No. 21222406, 21474037, 91123031, and 21221063), the Program for New Century Excellent Talents in University, Doctoral Fund of Ministry of Education of China (No. 20130061110019), and Science and Technology Development Program of Jilin Province.

Return