Journal Home > Volume 8 , Issue 9

It is theorized that enhanced thermal heating may result from exposing single-walled carbon nanotubes (SWNTs) embedded in a conductive host to radiofrequency (RF) electric fields. We examine the RF-induced (13.56 MHz) heating behaviors of 95% metallic- and semiconducting-enriched SWNTs (m-/s-SWNTs) suspended in aqueous solutions with varying NaCl molarity (0.001 mM–1 M). The heating effects were only evident for host molarities below 1 mM (equivalent to 0.1 S/m) at which the s-SWNT heating rates dominated those of the m-SWNTs. The heating effects were localized to aligned and aggregated "SWNT ropes" ~1 cm in length that formed in suspension, parallel to the electric-field vector, during the RF exposure. For molarities above 1 mM, no enhancements were evident, owing to the large heating effects of the bulk ionic NaCl suspensions, which were observed in previous studies. Although larger enhancement effects proportional to the host conductivity have been theoretically predicted for m-/s-SWNT suspensions, this was not observed most likely because of the aggregation and screening effects, which diminished the scattered electric field near the m-/s-SWNTs. Our research may further the development of better nanoparticle heating agents for applications such as non-invasive RF-induced cancer hyperthermia.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Radiofrequency electric-field heating behaviors of highly enriched semiconducting and metallic single-walled carbon nanotubes

Show Author's information Stuart J. Corr1,2,3,§( )Mustafa Raoof2,4,§Brandon T. Cisneros2,3,5,§Alvin W. Orbaek3Matthew A. Cheney1,2,3Justin J. Law1,3Nadia C. Lara1,3Andrew R. Barron3,6Lon J. Wilson3Steven A. Curley1,2,7
Division of SurgeryBaylor College of MedicineHoustonTX77030USA
Department of Surgical OncologyUniversity of Texas M.D. Anderson Cancer CenterHoustonTX77030USA
Department of Chemistry and the Richard E. Smalley Institute for Nanoscale Science and TechnologyRice UniversityHoustonTX77005USA
Department of SurgeryThe University of ArizonaCollege of MedicineTucsonAZ85724USA
Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCA92093USA
College of EngineeringSwansea UniversitySingleton ParkSwanseaSA2 8PP, WalesUK
Department of Mechanical Engineering and Materials ScienceRice UniversityHoustonTX77005USA

§ These authors contributed equally to this work.

Abstract

It is theorized that enhanced thermal heating may result from exposing single-walled carbon nanotubes (SWNTs) embedded in a conductive host to radiofrequency (RF) electric fields. We examine the RF-induced (13.56 MHz) heating behaviors of 95% metallic- and semiconducting-enriched SWNTs (m-/s-SWNTs) suspended in aqueous solutions with varying NaCl molarity (0.001 mM–1 M). The heating effects were only evident for host molarities below 1 mM (equivalent to 0.1 S/m) at which the s-SWNT heating rates dominated those of the m-SWNTs. The heating effects were localized to aligned and aggregated "SWNT ropes" ~1 cm in length that formed in suspension, parallel to the electric-field vector, during the RF exposure. For molarities above 1 mM, no enhancements were evident, owing to the large heating effects of the bulk ionic NaCl suspensions, which were observed in previous studies. Although larger enhancement effects proportional to the host conductivity have been theoretically predicted for m-/s-SWNT suspensions, this was not observed most likely because of the aggregation and screening effects, which diminished the scattered electric field near the m-/s-SWNTs. Our research may further the development of better nanoparticle heating agents for applications such as non-invasive RF-induced cancer hyperthermia.

Keywords: carbon nanotubes, hyperthermia, metallic, radiofrequency, semiconducting

References(47)

1

Gannon, C. J.; Cherukuri, P.; Yakobson, B. I.; Cognet, L.; Kanzius, J. S.; Kittrell, C.; Weisman, R. B.; Pasquali, M.; Schmidt, H. K.; Smalley, R. E. et al. Carbon nanotube- enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 2007, 110, 2654-2665.

2

Glazer, E. S.; Curley, S. A. Radiofrequency field-induced thermal cytotoxicity in cancer cells treated with fluorescent nanoparticles. Cancer 2010, 116, 3285-3293.

3

Glazer, E. S.; Massey, K. L.; Zhu, C. H.; Curley, S. A. Pancreatic carcinoma cells are susceptible to noninvasive radio frequency fields after treatment with targeted gold nanoparticles. Surgery 2010, 148, 319-324.

4

Glazer, E. S.; Zhu, C. H.; Massey, K. L.; Thompson, C. S.; Kaluarachchi, W. D.; Hamir, A. N.; Curley, S. A. Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles. Clin. Cancer Res. 2010, 16, 5712-5721.

5

Glazer, E. S.; Curley, S. A. Non-invasive radiofrequency ablation of malignancies mediated by quantum dots, gold nanoparticles and carbon nanotubes. Ther. Deliv. 2011, 2, 1325-1330.

6

Corr, S. J.; Raoof, M.; Mackeyev, Y.; Phounsavath, S.; Cheney, M. A.; Cisneros, B. T.; Shur, M.; Gozin, M.; McNally, P. J.; Wilson, L. J. et al. Citrate-capped gold nanoparticle electrophoretic heat production in response to a time-varying radiofrequency electric-field. J. Phys. Chem. C 2012, 116, 24380-24389.

7

Raoof, M.; Corr, S. J.; Kaluarachchi, W. D.; Massey, K. L.; Briggs, K.; Zhu, C. H.; Cheney, M. A.; Wilson, L. J.; Curley, S. A. Stability of antibody-conjugated gold nanoparticles in the endolysosomal nanoenvironment: Implications for noninvasive radiofrequency-based cancer therapy. Nanomed. Nanotechnol. 2012, 8, 1096-1105.

8

Raoof, M.; Cisneros, B. T.; Corr, S. J.; Palalon, F.; Curley, S. A.; Koshkina, N. V. Tumor selective hyperthermia induced by short-wave capacitively-coupled RF electric-fields. PLOS ONE 2013, 8, e68506.

9

Raoof, M.; Cisneros, B. T.; Guven, A.; Phounsavath, S.; Corr, S. J.; Wilson, L. J.; Curley, S. A. Remotely triggered cisplatin release from carbon nanocapsules by radiofrequency fields. Biomaterials 2013, 34, 1862-1869.

10
Stuart, J. C.; Mustafa, R.; Lon, J. W.; Steven, A. C. Nanoparticles for noninvasive radiofrequency-induced cancer hyperthermia. In Functional Nanoparticles for Bioanalysis, Nanomedicine, and Bioelectronic Devices Volume 2; American Chemical Society: Washington, DC, 2012; pp 81-94.https://doi.org/10.1021/bk-2012-1113.ch006
DOI
11

Bogdanov, A. A.; Gupta, S.; Koshkina, N.; Corr, S. J.; Zhang, S.; Curley, S. A.; Han, G. Gold nanoparticles stabilized with MPEG-grafted Poly(l-lysine): In vitro and in vivo evaluation of a potential theranostic agent. Bioconjugate Chem. 2015, 26, 39-50.

12

Raoof, M.; Corr, S. J.; Zhu, C.; Cisneros, B. T.; Kaluarachchi, W. D.; Phounsavath, S.; Wilson, L. J.; Curley, S. A. Gold nanoparticles and radiofrequency in experimental models for hepatocellular carcinoma. Nanomed. Nanotechnol. 2014, 10, 1121-1130.

13

Raoof, M.; Zhu, C.; Cisneros, B. T.; Liu, H.; Corr, S. J.; Wilson, L. J.; Curley, S. A. Hyperthermia inhibits recombination repair of gemcitabine-stalled replication forks. J. Natl. Cancer. Inst. 2014, 106.

14

Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.; Ackerson, C. J. Radiofrequency heating pathways for gold nanoparticles. Nanoscale 2014, 6, 8459-8472.

15

Kruse, D. E.; Stephens, D. N.; Lindfors, H. A.; Ingham, E. S.; Paoli, E. E.; Ferrara, K. W. A Radio-frequency coupling network for heating of citrate-coated gold nanoparticles for cancer therapy: Design and analysis. IEEE T. BIO-MED. ENG. 2011, 58, 2002-2012.

16

Li, D.; Jung, Y. S.; Kim, H. K.; Chen, J.; Geller, D. A.; Shuba, M. V.; Maksimenko, S. A.; Patch, S.; Forati, E.; Hanson, G. W. The effect of sample holder geometry on electromagnetic heating of nanoparticle and NaCl solutions at 13.56 MHz. IEEE T. Biomed. Eng. 2012, 59, 3468-3474.

17

Kim, H. K.; Hanson, G. W.; Geller, D. A. Chemistry. Are gold clusters in RF fields hot or not? Science 2013, 340, 441-442.

18

Sassaroli, E.; Li, K. C. P.; Neill, B. E. O. Radio frequency absorption in gold nanoparticle suspensions: A phenomenological study. J. Phys. D: Appl. Phys. 2012, 45, 075303.

19

Ando, T. The electronic properties of graphene and carbon nanotubes. NPG Asia Mater. 2009, 1, 17-21.

20

Wang, X.; Xia, T.; Duch, M. C.; Ji, Z. X.; Zhang, H. Y.; Li, R. B.; Sun, B. B; Lin, S. J.; Meng, H.; Liao, Y. -P. et al. Pluronic F108 coating decreases the lung fibrosis potential of multiwall carbon nanotubes by reducing lysosomal injury. Nano Lett. 2012, 12, 3050-3061.

21

He, Y. J.; Li, D. Q.; Li, T. Y.; Lin, X. Y.; Zhang, J.; Wei, Y.; Liu, P.; Zhang, L. N.; Wang, J. P.; Li, Q. Q. et al. Metal- film-assisted ultra-clean transfer of single-walled carbon nanotubes. Nano Res. 2014, 7, 981-989.

22

Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room- temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49-52.

23

Li, Y. S.; Ge, J.; Cai, J. H.; Zhang, J.; Lu, W.; Liu, J.; Chen, L. W. Contactless probing of the intrinsic carrier transport in single-walled carbon nanotubes. Nano Res. 2014, 7, 1623-1630.

24

Shulaker, M. M.; Van Rethy, J.; Wu, T. F.; Suriyasena Liyanage, L.; Wei, H.; Li, Z.; Pop, E.; Gielen, G.; Wong, H. S. P.; Mitra, S. Carbon nanotube circuit integration up to sub-20 nm channel lengths. ACS Nano 2014, 8, 3434-3443.

25

Yu, D. S.; Goh, K.; Wang, H.; Wei, L.; Jiang, W. C.; Zhang, Q.; Dai, L. M.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nano 2014, 9, 555-562.

26

Luís, F. F. N.; John, J. K.; Brent, D. V. R.; Rajagopal, R.; Daniel, E. R.; Roger, G. H. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy. Nanotechnology 2013, 24, 375104.

27

Feng, G.; Zhang, H.; Dimitrios, V. P.; Khoa, B.; Christina, L.; Hai, M. D. Mesoscopic modeling of cancer photothermal therapy using single-walled carbon nanotubes and near infrared radiation: insights through an off-lattice Monte Carlo approach. Nanotechnology 2014, 25, 205101.

28

Guven, A.; Rusakova, I. A.; Lewis, M. T.; Wilson, L. J. Cisplatin@US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials 2012, 33, 1455-1461.

29

Andreoli, E.; Suzuki, R.; Orbaek, A. W.; Bhutani, M. S.; Hauge, R. H.; Adams, W.; Fleming, J. B.; Barron, A. R. Preparation and evaluation of polyethyleneimine-single walled carbon nanotube conjugates as vectors for pancreatic cancer treatment. J. Mater. Chem. B 2014, 2, 4740-4747.

30

Shuba, M. V.; Slepyan, G. Y.; Maksimenko, S. A.; Hanson, G. W. Radiofrequency field absorption by carbon nanotubes embedded in a conductive host. J. Appl. Phys. 2010, 108, 114302-114310.

31

Hanson, G. W.; Monreal, R. C.; Apell, S. P. Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles. J. Appl. Phys. 2011, 109, 124306.

32

Gach, H. M.; Nair, T. Radiofrequency interaction with conductive colloids: Permittivity and electrical conductivity of single-wall carbon nanotubes in saline. Bioelectromagnetics 2010, 31, 582-588.

33

Shuba, M. V.; Slepyan, G. Y.; Maksimenko, S. A.; Hanson, G. W. RF and microwave electrical response of carbon nanotube saline solutions for potential biomedical applications. Nanosci. Nanotechnol. Lett. 2011, 3, 885-888.

34

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47-99.

35

Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 2003, 3, 1235-1238.

36

Chernov, A. I.; Obraztsova, E. D. Metallic single-wall carbon nanotubes separated by density gradient ultracentrifugation. Phys. Status Solidi B 2009, 246, 2477-2481.

37

Ouyang, M.; Huang, J. -L.; Lieber, C. M. Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc. Chem. Res. 2002, 35, 1018-1025.

38

Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R. R.; Rousset, A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2001, 39, 507-514.

39

Corr, S. J.; Raoof, M.; Mackeyev, Y.; Phounsavath, S.; Cheney, M. A.; Cisneros, B. T.; Shur, M.; Gozin, M.; McNally, P. J.; Wilson, L. J. et al. Citrate-capped gold nanoparticle electrophoretic heat production in response to a time-varying radio-frequency electric field. J. Phys. Chem. C 2012, 116, 24380-24389.

40

Oliva-Avilés, A. I.; Avilés, F.; Sosa, V.; Oliva, A. I.; Gamboa, F. Dynamics of carbon nanotube alignment by electric fields. Nanotechnology 2012, 23, 465710.

41

Raoof, M.; Zhu, C. H.; Cisneros, B. T.; Liu, H.; Corr, S. J.; Wilson, L. J.; Curley, S. A. Hyperthermia inhibits recombination repair of gemcitabine-stalled replication forks. J. Natl. Cancer I. 2014, 106.

42

Liu, X.; Chen, H. -J.; Alfadhl, Y.; Chen, X.; Parini, C.; Wen, D. Conductivity and frequency dependent specific absorption rate. J. Appl. Phys. 2013, 113, 074902-074910.

43

Zhang, Q.; Hároz, E. H.; Jin, Z. H.; Ren, L.; Wang, X.; Arvidson, R. S.; Lüttge, A.; Kono, J. Plasmonic nature of the terahertz conductivity peak in single-wall carbon nanotubes. Nano Lett. 2013, 13, 5991-5996.

44

Virtanen, H.; Keshvari, J.; Lappalainen, R. Interaction of radio frequency electromagnetic fields and passive metallic implants—A brief review. Bioelectromagnetics 2006, 27, 431-439.

45

Cole, K. S.; Cole, R. H. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 1941, 9, 341-351.

46

Waterman, P. C.; Truell, R. Multiple scattering of waves. J. Math. Phys. 1961, 2, 512-537.

47

Slepyan, G. Y.; Shuba, M. V.; Maksimenko, S. A.; Thomsen, C.; Lakhtakia, A. Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment. Phys. Rev. B 2010, 81, 205423.

Video
nr-8-9-2859_ESM_Movie S1.mp4
nr-8-9-2859_ESM_Movie S2.mp4
nr-8-9-2859_ESM_Movie S3.mp4
nr-8-9-2859_ESM_Movie S4.mp4
File
nr-8-9-2859_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 January 2015
Revised: 07 April 2015
Accepted: 14 April 2015
Published: 24 July 2015
Issue date: September 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was funded by the NIH (No. U54CA143837), the NIH M.D. Anderson Cancer Center Support Grants (No. CA016672), the V Foundation (SAC), The Robert A. Welch Foundation (No. C-0627, LJW; No. C-0002, ARB), and an unrestricted research grant from the Kanzius Research Foundation (SAC, Erie, PA, USA).

Return