Journal Home > Volume 8 , Issue 9

Carbon nanodots (CDs) formed by hydrothermal dehydration occur as mixtures of differently sized nanoparticles with different degrees of carbonization. Common ultracentrifugation has failed in sorting them, owing to their extremely high colloidal stability. Here, we introduce an ultracentrifugation method using a hydrophilicity gradient to sort such non-sedimental CDs. CDs, synthesized from citric acid and ethylenediamine, were pre-treated by acetone to form clusters. Such clusters "de-clustered" as they were forced to sediment through media comprising gradients of ethanol and water with varied volume ratios. Primary CDs with varied sizes and degrees of carbonization detached from the clusters to become well dispersed in the corresponding gradient layers. Their settling level was highly dependent on the varied hydrophilicity and solubility of the environmental media. Thus, the proposed hydrophilicity-triggered sorting strategy could be used for other nanoparticles with extremely high colloidalstability, which further widens the range of sortable nanoparticles. Furthermore, according to careful analysis of the changes in size, composition, quantum yield, and transient fluorescence of typical CDs in the post-separation fractions, it was concluded that the photoluminescence of the as-prepared hydrothermal carbonized CDs mainly arose from the particles' surface molecular state rather than their sizes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots

Show Author's information Li DengXiaolei WangYun KuangCheng WangLiang Luo( )Fang WangXiaoming Sun( )
State Key Laboratory of Chemical Resource EngineeringBox 98Beijing University of Chemical TechnologyBeijing100029China

Abstract

Carbon nanodots (CDs) formed by hydrothermal dehydration occur as mixtures of differently sized nanoparticles with different degrees of carbonization. Common ultracentrifugation has failed in sorting them, owing to their extremely high colloidal stability. Here, we introduce an ultracentrifugation method using a hydrophilicity gradient to sort such non-sedimental CDs. CDs, synthesized from citric acid and ethylenediamine, were pre-treated by acetone to form clusters. Such clusters "de-clustered" as they were forced to sediment through media comprising gradients of ethanol and water with varied volume ratios. Primary CDs with varied sizes and degrees of carbonization detached from the clusters to become well dispersed in the corresponding gradient layers. Their settling level was highly dependent on the varied hydrophilicity and solubility of the environmental media. Thus, the proposed hydrophilicity-triggered sorting strategy could be used for other nanoparticles with extremely high colloidalstability, which further widens the range of sortable nanoparticles. Furthermore, according to careful analysis of the changes in size, composition, quantum yield, and transient fluorescence of typical CDs in the post-separation fractions, it was concluded that the photoluminescence of the as-prepared hydrothermal carbonized CDs mainly arose from the particles' surface molecular state rather than their sizes.

Keywords: photoluminescence, mechanism, carbon dots, nanoseparation, hydrophilicity gradient, pre-aggregation, de-clustering

References(34)

1

Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736-12737.

2

Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726-6744.

3

Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S. T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230-24253.

4

Ding, C. Q.; Zhu, A. W.; Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 2014, 47, 20-30.

5

Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D. et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318-11319.

6

Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C 2009, 113, 18546-18551.

7

Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem., Int. Ed. 2010, 49, 4430- 4434.

8

Shi, W. B.; Wang, Q. L.; Long, Y. J.; Cheng, Z. L.; Chen, S. H.; Zheng, H. Z.; Huang, Y. M. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun. 2011, 47, 6695-6697.

9

Choi, H.; Ko, S. J.; Choi, Y.; Joo, P.; Kim, T.; Lee, B. R.; Jung, J. W.; Choi, H. J.; Cha, M.; Jeong, J. R. et al. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat. Photonics 2013, 7, 732-738.

10

Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. B.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953-3957.

11

Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756-7757.

12

Jiang, H. Q.; Chen, F.; Lagally, M. G.; Denes, F. S. New strategy for synthesis and functionalization of carbon nanoparticles. Langmuir 2010, 26, 1991-1995.

13

Liu, H. P.; Ye, T.; Mao, C. D. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem., Int. Ed. 2007, 46, 6473-6475.

14

Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P. Photoluminescent carbogenic dots. Chem. Mater. 2008, 20, 4539-4541.

15

Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L. H.; Song, L.; Alemany, L. B.; Zhan, X. B.; Gao, G. H. et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012, 12, 844-849.

16

Lingam, K.; Podila, R.; Qian, H. J.; Serkiz, S.; Rao, A. M. Evidence for edge-state photoluminescence in graphene quantum dots. Adv. Funct. Mater. 2013, 23, 5062-5065.

17

Wang, L.; Zhu, S. J.; Wang, H. Y.; Qu, S. N.; Zhang, Y. L.; Zhang, J. H.; Chen, Q. D.; Xu, H. L.; Han, W.; Yang, B. et al. Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano 2014, 8, 2541-2547.

18

Liu, R. L.; Wu, D. Q.; Liu, S. H.; Koynov, K.; Knoll, W.; Li, Q. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem., Int. Ed. 2009, 48, 4598-4601.

19

Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60-65.

20

Bai, L.; Ma, X. J.; Liu, J. F.; Sun, X. M.; Zhao, D. Y.; Evans, D. G. Rapid separation and purification of nanoparticles in organic density gradients. J. Am. Chem. Soc. 2010, 132, 2333-2337.

21

Mastronardi, M. L.; Hennrich, F.; Henderson, E. J.; Maier- Flaig, F.; Blum, C.; Reichenbach, J.; Lemmer, U.; Kübel, C.; Wang, D.; Kappes, M. M. et al. Preparation of monodisperse silicon nanocrystals using density gradient ultracentrifugation. J. Am. Chem. Soc. 2011, 133, 11928-11931.

22

Ma, X. J.; Kuang, Y.; Bai, L.; Chang, Z.; Wang, F.; Sun, X. M.; Evans, D. G. Experimental and mathematical modeling studies of the separation of zinc blende and wurtzite phases of CdS nanorods by density gradient ultracentrifugation. ACS Nano 2011, 5, 3242-3249.

23

Zhang, C. L.; Luo, L.; Luo, J.; Evans, D. G.; Sun, X. M. A process-analysis microsystem based on density gradient centrifugation and its application in the study of the galvanic replacement mechanism of Ag nanoplates with HAuCl4. Chem. Commun. 2012, 48, 7241-7243.

24

Song, S.; Kuang, Y.; Liu, J. F.; Yang, Q.; Luo, L.; Sun, X. M. Separation and phase transition investigation of Yb3+/Er3+ co-doped NaYF4 nanoparticles. Dalton Trans. 2013, 42, 13315-13318.

25

Horn, D.; Rieger, J. Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew. Chem., Int. Ed. 2001, 40, 4330-4361.

DOI
26

Aubry, J.; Ganachaud, F.; Addad, J. P. C.; Cabane, B. Nanoprecipitation of polymethylmethacrylate by solvent shifting: 1. Boundaries. Langmuir 2009, 25, 1970-1979.

27

Zheng, M.; Xie, Z. G.; Qu, D.; Li, D.; Du, P.; Jing, X. B.; Sun, Z. C. On-off-on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. ACS Appl. Mater. Inter. 2013, 5, 13242-13247.

28

Song, Y. B.; Zhu, S. J.; Xiang, S. Y.; Zhao, X. H.; Zhang, J. H.; Zhang, H.; Fu, Y.; Yang, B. Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale 2014, 6, 4676-4682.

29

Tang, L. B.; Ji, R. B.; Li, X. M.; Bai, G. X.; Liu, C. P.; Hao, J. H.; Lin, J. Y.; Jiang, H. X.; Teng, K. S.; Yang, Z. B. et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano 2014, 8, 6312-6320.

30

Wei, W. L.; Xu, C.; Wu, L.; Wang, J. S.; Ren, J. S.; Qu, X. G. Non-enzymatic-browning-reaction: A versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display. Sci. Rep. 2014, 4, 3564.

31

Li, W.; Zhang, Z. H.; Kong, B.; Feng, S. S.; Wang, J. X.; Wang, L. Z.; Yang, J. P.; Zhang, F.; Wu, P. Y.; Zhao, D. Y. Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew. Chem., Int. Ed. 2013, 52, 8151-8155.

32

Wang, X. Y.; Qu, L. H.; Zhang, J. Y.; Peng, X. G.; Xiao, M. Surface-related emission in highly luminescent CdSe quantum dots. Nano Lett. 2003, 3, 1103-1106.

33

Zhao, K.; Li, J.; Wang, H. Z.; Zhuang, J. Q.; Yang, W. S. Stoichiometric ratio dependent photoluminescence quantum yields of the thiol capping CdTe nanocrystals. J. Phys. Chem. C 2007, 111, 5618-5621.

34

Huang, L. W.; Liao, Q.; Shi, Q.; Fu, H. B.; Ma, J. S.; Yao, J. N. Rubrene micro-crystals from solution routes: Their crystallography, morphology and optical properties. J. Mater. Chem. 2010, 20, 159-166.

File
nr-8-9-2810_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 February 2015
Revised: 29 March 2015
Accepted: 05 April 2015
Published: 02 July 2015
Issue date: September 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21101012, 21125101 and 21271018), the Fundamental Research Funds for the Central Universities (No. YS1406), the National Basic Research Program of China (No. 2011CBA00503), Program for Changjiang Scholars and Innovative Research Team in University.

Return