AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Porous bimetallic Pt-Fe nanocatalysts for highly efficient hydrogenation of acetone

Yongjun Ji1Yuen Wu2( )Guofeng Zhao3Dingsheng Wang3Lei Liu3,4Wei He3,4Yadong Li1( )
Department of ChemistryTsinghua UniversityBeijing100084China
Center of Advanced Nanocatalysis (CAN-USTC) and Department of ChemistryUniversity of Science and Technology of ChinaHefei230026China
Tsinghua-Peking Center for Life SciencesTsinghua UniversityBeijing100084China
School of MedicineTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

Porous Pt-Fe bimetallic nanocrystals have been synthesized via self-assembly and can effectively facilitate the synthesis of 2-propanol from acetone. The bimetallic catalyst has three-dimensional channels and shows turnover frequencies (TOFs) of up to 972 h-1 for a continuous process more than 50 h. Preliminary mechanistic studies suggest that the high reactivity is related to the interface consisting of a bimetallic Pt-Fe alloy and Fe2O3-x. An understanding of real catalytic behavior and the catalytic mechanism based on model systems has been shown to help fabricate an improved Pt/Fe3O4 catalyst with increased activity and lifetime which has great potential for large-scale industrial applications.

Electronic Supplementary Material

Download File(s)
12274_2015_777_MOESM1_ESM.pdf (2.3 MB)

References

1

MacNaughton, N. W.; Anderson, L. C. The mechanism of the catalytic reduction of some carbonyl compounds. J. Am. Chem. Soc. 1942, 64, 1456-1459.

2
Haining, G. J. Olefin hydration process and catalyst. U.S. Patent 5, 684, 216 A, Nov 04, 1997.
3

Niwa, S. I.; Eswaramoorthy, M.; Nair, J.; Raj, A.; Itoh, N.; Shoji, H.; Namba, T.; Mizukami, F. A one-step conversion of benzene to phenol with a palladium membrane. Science 2002, 295, 105-107.

4

van Santen, R. A.; Sheldon, R. A. Catalytic Oxidation: Principles and Applications. ; World Scientific: Singapore, 1995.

5

Gandia, L. M.; Montes, M. Effect of the design variables on the energy performance and size parameters of a heat transformer based on the system acetone/H2/2-propanol. Int. J. Energy Res. 1992, 16, 851-864.

6

Meng, N.; Shinoda, S.; Saito, Y. Improvements on thermal efficiency of chemical heat pump involving the reaction couple of 2-propanol dehydrogenation and acetone hydrogenation. Int. J. Hydrogen Energy 1997, 22, 361-367.

7

Pardillos-Guindet, J.; Vidal, S.; Court, J.; Fouilloux, P. Electrode potential of a dispersed Raney nickel electrode during acetone hydrogenation: Influence of the solution and reaction kinetics. J. Catal. 1995, 155, 12-20.

8

Dresselhaus, M.; Crabtree, G.; Buchanan, M. Basic Research Needs for the Hydrogen Economy: Report of the Basic Energy Sciences Workshop on Hydrogen Production, Storage and Use; Office of science, U.S. department of energy: Washington, 2004.

9

Lemcoff, N. O. Liquid phase catalytic hydrogenation of acetone. J. Catal. 1977, 46, 356-364.

10

Gandia, L. M.; Diaz, A.; Montes, M. Selectivity in the high-temperature hydrogenation of acetone with silica-supported nickel and cobalt catalysts. J. Catal. 1995, 157, 461-471.

11

Sen, B.; Vannice, M. A. Metal-support effects on acetone hydrogenation over platinum catalysts. J. Catal. 1988, 113, 52-71.

12

Fuente, A. M.; Pulgar, G.; González, F.; Pesquera, C.; Blanco, C. Activated carbon supported Pt catalysts: Effect of support texture and metal precursor on activity of acetone hydrogenation. Appl. Catal. A 2001, 208, 35-46.

13

Noyori, R.; Hashiguchi, S. Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc. Chem. Res. 1997, 30, 97-102.

14

Rao, R. S.; Walters, A. B.; Vannice, M. A. Influence of crystallite size on acetone hydrogenation over copper catalysts. J. Phys. Chem. B 2005, 109, 2086-2092.

15

Özkar, S.; Finke, R. G. Iridium(0) nanocluster, acid-assisted catalysis of neat acetone hydrogenation at room temperature: Exceptional activity, catalyst lifetime, and selectivity at complete conversion. J. Am. Chem. Soc. 2005, 127, 4800-4808.

16

Niu, Z. Q.; Wang, D. S.; Yu, R.; Peng, Q.; Li, Y. D. Highly branched Pt-Ni nanocrystals enclosed by stepped surface for methanol oxidation. Chem. Sci. 2012, 3, 1925-1929.

17

Huang, X. Q.; Li, Y. J.; Chen, Y.; Zhou, E. B.; Xu, Y. X.; Zhou, H. L.; Duan, X. F.; Huang, Y. Palladium-based nanostructures with highly porous features and perpendicular pore channels as enhanced organic catalysts. Angew. Chem. Int. Ed. 2013, 52, 2520-2524.

18

Wu, H. X.; Wang, P.; He, H. L.; Jin, Y. D. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res. 2012, 5, 135-144.

19

Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199-208.

20

Banfield, J. F.; Welch, S. A.; Zhang, H.; Ebert, T. T.; Penn, R. L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 2000, 289, 751-754.

21

Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys. Nano Res. 2010, 3, 574-580.

22

Wang, H. L.; Krier, J. M.; Zhu, Z. W.; Melaet, G.; Wang, Y. H.; Kennedy, G.; Alayoglu, S.; An, K.; Somorjai, G. A. Promotion of hydrogenation of organic molecules by incorporating iron into platinum nanoparticle catalysts: Displacement of inactive reaction intermediates. ACS Catal. 2013, 3, 2371-2375.

23

Schmitz, E.; Eichhorn, I.; Patai, S. The Chemistry of the Ether Linkage; Interscience: New York, 1967; pp 341-345.

24

Narayanan, S.; Unnikrishnan, R. Selective hydrogenation of acetone to methyl isobutyl ketone (MIBK) over co-precipitated Ni/Al2O3 catalysts. Appl. Catal. A 1996, 145, 231-236.

25

Cunningham, J.; Al-Sayyed, G. H.; Cronin, J. A.; Healy, C.; Hirschwald, W. Surface synergisms between copper and its oxides in catalytic isopropanol/acetone interconversions at 430-523 K. Appl. Catal. 1986, 25, 129-138.

26

Boffa, A.; Lin, C.; Bell, A. T.; Somorjai, G. A. Promotion of CO and CO2 hydrogenation over Rh by metal oxides: The influence of oxide lewis acidity and reducibility. J. Catal. 1994, 149, 149-158.

27

Zhou, H. P.; Wu, H. S.; Shen, J.; Yin, A. X.; Sun, L. D.; Yan, C. H. Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity. J. Am. Chem. Soc. 2010, 132, 4998-4999.

28

Bowker, M.; James, D.; Stone, P.; Bennett, R.; Perkins, N.; Millard, L.; Greaves, J.; Dickinson, A. Catalysis at the metal-support interface: Exemplified by the photocatalytic reforming of methanol on Pd/TiO2. J. Catal. 2003, 217, 427-433.

29

Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987; pp 619-665.

Nano Research
Pages 2706-2713
Cite this article:
Ji Y, Wu Y, Zhao G, et al. Porous bimetallic Pt-Fe nanocatalysts for highly efficient hydrogenation of acetone. Nano Research, 2015, 8(8): 2706-2713. https://doi.org/10.1007/s12274-015-0777-z

597

Views

48

Crossref

N/A

Web of Science

43

Scopus

5

CSCD

Altmetrics

Received: 25 February 2015
Revised: 30 March 2015
Accepted: 01 April 2015
Published: 29 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return