Journal Home > Volume 8 , Issue 8

The assembly of nanocrystals into ordered structures called supercrystals or superstructures has become a pivotal frontier owing to numerous useful applications such as correlating the arrangements of atoms in macroscopic crystals and tuning the collective properties to meet the demands of various applications. In this article, recent progress in the preparation of three-dimensional superlattices of nanocrystals is outlined, with a particular emphasis on the driving forces and evolutionary routes beyond orderly assembly. First, the leading or repulsive forces that internally and externally govern the formation of three-dimensional supercrystals are systematically identified and discussed with respect to their origins and functions in three-dimensional self-organization. Then a synoptic introduction of commonly applied means of nanocrystal self-assembly based on growth scenarios such as droplet evaporation and a liquid/liquid interface is presented with specific cases and detailed analyses. Finally, the existing challenges and prospects for this field are briefly highlighted.


menu
Abstract
Full text
Outline
About this article

Understanding the forces acting in self-assembly and the implications for constructing three-dimensional (3D) supercrystals

Show Author's information Chenyu Wang1Carrie Siu2Jun Zhang3Jiye Fang1,2( )
Department of ChemistryState University of New York at BinghamtonBinghamtonNew York13902USA
Materials Science and Engineering ProgramState University of New York at BinghamtonBinghamtonNew York13902USA
State Key Laboratory of Heavy Oil ProcessingCollege of Chemical EngineeringChina University of PetroleumQingdao266580China

Abstract

The assembly of nanocrystals into ordered structures called supercrystals or superstructures has become a pivotal frontier owing to numerous useful applications such as correlating the arrangements of atoms in macroscopic crystals and tuning the collective properties to meet the demands of various applications. In this article, recent progress in the preparation of three-dimensional superlattices of nanocrystals is outlined, with a particular emphasis on the driving forces and evolutionary routes beyond orderly assembly. First, the leading or repulsive forces that internally and externally govern the formation of three-dimensional supercrystals are systematically identified and discussed with respect to their origins and functions in three-dimensional self-organization. Then a synoptic introduction of commonly applied means of nanocrystal self-assembly based on growth scenarios such as droplet evaporation and a liquid/liquid interface is presented with specific cases and detailed analyses. Finally, the existing challenges and prospects for this field are briefly highlighted.

Keywords: superlattices, self-assembly, three-dimensional, interparticle forces, supercrystals

References(100)

1

Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418-2421.

2

Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293-346.

3

Sun, S. H. Recent advances in chemical synthesis, self- assembly, and applications of FePt nanoparticles. Adv. Mater. 2006, 18, 393-403.

4

Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857-13870.

5

Murray, C. B.; Sun, S. H.; Gaschler, W.; Doyle, H.; Betley, T. A.; Kagan, C. R. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 2001, 45, 47-56.

6

Amir Parviz, B.; Ryan, D.; Whitesides, G. M. Using self- assembly for the fabrication of nano-scale electronic and photonic devices. IEEE Trans. Adv. Packag. 2003, 26, 233- 241.

7

Pileni, M. P. Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B 2001, 105, 3358- 3371.

8

Nie, Z. H.; Petukhova, A.; Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 2010, 5, 15-25.

9

Shipway, A. N.; Katz, E.; Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 2000, 1, 18-52.

DOI
10

Glotzer, S. C.; Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 2007, 6, 557-562.

11

Grzybowski, B. A.; Wilmer, C. E.; Kim, J.; Browne, K. P.; Bishop, K. J. M. Self-assembly: From crystals to cells. Soft Matter 2009, 5, 1110-1128.

12

Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312-1319.

13

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape- controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60-103.

14

Lee, Y. S. Self-Assembly and Nanotechnology: A Force Balance Approach; John Wiley & Sons: Hoboken, NJ, USA, 2008.

DOI
15

Brinker, C. J.; Lu, Y. F.; Sellinger, A.; Fan, H. Y. Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 1999, 11, 579-585.

DOI
16

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close- packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545-610.

17

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 1995, 270, 1335-1338.

18

Wang, Z. L. Structural analysis of self-assembling nanocrystal superlattices. Adv. Mater. 1998, 10, 13-30.

DOI
19

Rupich, S. M.; Shevchenko, E. V.; Bodnarchuk, M. I.; Lee, B.; Talapin, D. V. Size-dependent multiple twinning in nanocrystal superlattices. J. Am. Chem. Soc. 2010, 132, 289-296.

20

Talapin, D. V.; Shevchenko, E. V.; Bodnarchuk, M. I.; Ye, X. C.; Chen, J.; Murray, C. B. Quasicrystalline order in self- assembled binary nanoparticle superlattices. Nature 2009, 461, 964-967.

21

Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 2000, 404, 746-748.

22

Quan, Z. W.; Fang, J. Y. Superlattices with non-spherical building blocks. Nano Today 2010, 5, 390-411.

23

Dawson, K. A. The glass paradigm for colloidal glasses, gels, and other arrested states driven by attractive interactions. Curr. Opin. Colloid Interface Sci. 2002, 7, 218-227.

24

Sciortino, F.; Tartaglia, P. Glassy colloidal systems. Adv. Phys. 2005, 54, 471-524.

25

Henderson, D.; Duh, D. M.; Chu, X. L.; Wasan, D. An expression for the dispersion force between colloidal particles. J. Colloid Interface Sci. 1997, 185, 265-268.

26

Hill, T. L. Statistical Mechanics: Principles and Selected Applications; Courier Dover Publications: New York, 2013.

27

Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 2009, 5, 1600-1630.

28

Hamaker, H. The London—van der Waals attraction between spherical particles. Physica 1937, 4, 1058-1072.

29

Dzyaloshinskii, I. E.; Lifshitz, E. M.; Pitaevskii, L. P. General theory of van der Waals' forces. Sov. Phys. Usp. 1961, 4, 153-176.

30

Langbein, D. Theory of van der Waals Attraction. Springer: Heidelberg, Berlin, 1974.

DOI
31

Kim, H. Y.; Sofo, J. O.; Velegol, D.; Cole, M. W.; Lucas, A. A. van der Waals forces between nanoclusters: Importance of many-body effects. J. Chem. Phys. 2006, 124, 074504.

32

Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 2008, 7, 527-538.

33

Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A. Electrostatic self-assembly of binary nanoparticle crystals with a diamond- like lattice. Science 2006, 312, 420-424.

34

Verwey, E. J. W.; Overbeek, J. Th. G.; Overbeek, J. T. G. Theory of the Stability of Lyophobic Colloids; Courier Dover Publications: New York, 1999.

35

Israelachvili, J. N. Intermolecular and Surface Forces; Academic press: Burlington, MA, USA, 2011.

36

Grosberg, A. Y.; Nguyen, T. T.; Shklovskii, B. I. Colloquium: The physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 2002, 74, 329-345.

37

Pucci, A.; Willinger, M. G.; Liu, F.; Zeng, X. B.; Rebuttini, V.; Clavel, G.; Bai, X.; Ungar, G.; Pinna, N. One-step synthesis and self-assembly of metal oxide nanoparticles into 3D superlattices. ACS Nano 2012, 6, 4382-4391.

38

Xie, Y.; Guo, S. M.; Ji, Y. L.; Guo, C. F.; Liu, X. F.; Chen, Z. Y.; Wu, X. C.; Liu, Q. Self-assembly of gold nanorods into symmetric superlattices directed by OH-terminated hexa (ethylene glycol) alkanethiol. Langmuir 2011, 27, 11394- 11400.

39

Klajn, R.; Bishop, K. J. M.; Fialkowski, M.; Paszewski, M.; Campbell, C. J.; Gray, T. P.; Grzybowski, B. A. Plastic and moldable metals by self-assembly of sticky nanoparticle aggregates. Science 2007, 316, 261-264.

40

Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 2002, 41, 48-76.

DOI
41

Kimura, M.; Kobayashi, S.; Kuroda, T.; Hanabusa, K.; Shirai, H. Assembly of gold nanoparticles into fibrous aggregates using thiol-terminated gelators. Adv. Mater. 2004, 16, 335- 338.

42

Kanehara, M.; Kodzuka, E.; Teranishi, T. Self-assembly of small gold nanoparticles through interligand interaction. J. Am. Chem. Soc. 2006, 128, 13084-13094.

43

Asakura, S.; Oosawa, F. On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 1954, 22, 1255-1256.

44

Israelachvili, J.; Gourdon, D. Putting liquids under molecular- scale confinement. Science 2001, 292, 867-868.

45

Kaplan, P. D.; Rouke, J. L.; Yodh, A. G.; Pine, D. J. Entropically driven surface phase separation in binary colloidal mixtures. Phys. Rev. Lett. 1994, 72, 582.

46

Jackson, A. M.; Myerson, J. W.; Stellacci, F. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nat. Mater. 2004, 3, 330-336.

47

Kiely, C. J.; Fink, J.; Brust, M.; Bethell, D.; Schiffrin, D. J. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 1998, 396, 444-446.

48

Godfrey Alig, A. R.; Akbulut, M.; Golan, Y.; Israelachvili, J. Forces between surfactant-coated ZnS nanoparticles in dodecane: Effect of water. Adv. Funct. Mater. 2006, 16, 2127-2134.

49

Ge, G. L.; Brus, L. Evidence for spinodal phase separation in two-dimensional nanocrystal self-assembly. J. Phys. Chem. B 2000, 104, 9573-9575.

50

Kinge, S.; Crego-Calama, M.; Reinhoudt, D. N. Self- assembling nanoparticles at surfaces and interfaces. ChemPhysChem 2008, 9, 20-42.

51

Ming, T.; Kou, X. S.; Chen, H. J.; Wang, T.; Tam, H. L.; Cheah, K. W.; Chen, J. Y.; Wang, J. F. Ordered gold nanostructure assemblies formed by droplet evaporation. Angew. Chem. Int. Ed. 2008, 47, 9685-9690.

52

Guerrero-Martínez, A.; Pérez-Juste, J.; Carbó-Argibay, E.; Tardajos, G.; Liz-Marzán, L. M. Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angew. Chem. Int. Ed. 2009, 48, 9484-9488.

53

Singh, A.; Gunning, R. D.; Ahmed, S.; Barrett, C. A.; English, N. J.; Garate, J. A.; Ryan, K. M. Controlled semiconductor nanorod assembly from solution: Influence of concentration, charge and solvent nature. J. Mater. Chem. 2012, 22, 1562-1569.

54

Sigman, M. B.; Saunders, A. E.; Korgel, B. A. Metal nanocrystal superlattice nucleation and growth. Langmuir 2004, 20, 978-983.

55

Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 2003, 426, 271-274.

56

Choi, J. J.; Bealing, C. R.; Bian, K. F.; Hughes, K. J.; Zhang, W. Y.; Smilgies, D. M.; Hennig, R. G.; Engstrom, J. R.; Hanrath, T. Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage. J. Am. Chem. Soc. 2011, 133, 3131-3138.

57

Korgel, B. A.; Fullam, S.; Connolly, S.; Fitzmaurice, D. Assembly and self-organization of silver nanocrystal superlattices: Ordered "soft spheres". J. Phys. Chem. B 1998, 102, 8379-8388.

58

Liao, C. W.; Lin, Y. S.; Chanda, K.; Song, Y. F.; Huang, M. H. Formation of diverse supercrystals from self-assembly of a variety of polyhedral gold nanocrystals. J. Am. Chem. Soc. 2013, 135, 2684-2693.

59

Li, R. P.; Bian, K. F.; Hanrath, T.; Bassett, W. A.; Wang, Z. W. Decoding the superlattice and interface structure of truncate PbS nanocrystal-assembled supercrystal and associated interaction forces. J. Am. Chem. Soc. 2014, 136, 12047-12055.

60

Hu, H.; Larson, R. G. Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 2006, 110, 7090-7094.

61

Xie, Y.; Guo, S. M.; Guo, C. F.; He, M.; Chen, D. X.; Ji, Y. L.; Chen, Z. Y.; Wu, X. C.; Liu, Q.; Xie, S. S. Controllable two-stage droplet evaporation method and its nanoparticle self-assembly mechanism. Langmuir 2013, 29, 6232-6241.

62

Lu, C. G.; Akey, A. J.; Dahlman, C. J.; Zhang, D. T.; Herman, I. P. Resolving the growth of 3D colloidal nanoparticle superlattices by real-time small-angle X-ray scattering. J. Am. Chem. Soc. 2012, 134, 18732-18738.

63

Choi, J. J.; Bian, K. F.; Baumgardner, W. J.; Smilgies, D. M.; Hanrath, T. Interface-induced nucleation, orientational alignment and symmetry transformations in nanocube superlattices. Nano Lett. 2012, 12, 4791-4798.

64

Lu, W. G.; Liu, Q. S.; Sun, Z. Y.; He, J. B.; Ezeolu, C.; Fang, J. Y. Super crystal structures of octahedral c-In2O3 nanocrystals. J. Am. Chem. Soc. 2008, 130, 6983-6991.

65

Courty, A.; Richardi, J.; Albouy, P. A.; Pileni, M. P. How to control the crystalline structure of supracrystals of 5-nm silver nanocrystals. Chem. Mater. 2011, 23, 4186-4192.

66

Ziherl, P.; Kamien, R. D. Maximizing entropy by minimizing area: Towards a new principle of self-organization. J. Phys. Chem. B 2001, 105, 10147-10158.

67

Bolhuis, P. G.; Frenkel, D.; Mau, S. C.; Huse, D. A. Entropy difference between crystal phases. Nature 1997, 388, 235-236.

68

Henry, A. I.; Courty, A.; Pileni, M. P.; Albouy, P. A.; Israelachvili, J. Tuning of solid phase in supracrystals made of silver nanocrystals. Nano Lett. 2008, 8, 2000-2005.

69

Goubet, N.; Richardi, J.; Albouy, P. A.; Pileni, M. P. How to predict the growth mechanism of supracrystals from gold nanocrystals. J. Phys. Chem. Lett. 2011, 2, 417-422.

70

Goubet, N.; Richardi, J.; Albouy, P. A.; Pileni, M. P. Which forces control supracrystal nucleation in organic media? Adv. Funct. Mater. 2011, 21, 2693-2704.

71

Demortière, A.; Launois, P.; Goubet, N.; Albouy, P. A.; Petit, C. Shape-controlled platinum nanocubes and their assembly into two-dimensional and three-dimensional superlattices. J. Phys. Chem. B 2008, 112, 14583-14592.

72

Chan, H.; Demortière, A.; Vukovic, L.; Král, P.; Petit, C. Colloidal nanocube supercrystals stabilized by multipolar coulombic coupling. ACS Nano 2012, 6, 4203-4213.

73

Nikoobakht, B.; Wang, Z. L.; El-Sayed, M. A. Self-assembly of gold nanorods. J. Phys. Chem. B 2000, 104, 8635-8640.

74

Grosso, D.; Cagnol, F.; Soler-Illia, G. J. de A. A.; Crepaldi, E. L.; Amenitsch, H.; Brunet-Bruneau, A.; Bourgeois, A.; Sanchez, C. Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv. Funct. Mater. 2004, 14, 309-322.

75

Jiang, P.; Bertone, J. F.; Hwang, K. S.; Colvin, V. L. Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 1999, 11, 2132-2140.

76

Kralchevsky, P. A.; Denkov, N. D. Capillary forces and structuring in layers of colloid particles. Curr. Opin. Colloid Interface Sci. 2001, 6, 383-401.

77

Dimitrov, A. S.; Nagayama, K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 1996, 12, 1303-1311.

78

Norris, D. J.; Arlinghaus, E. G.; Meng, L.; Heiny, R.; Scriven, L. E. Opaline photonic crystals: How does self-assembly work? Adv. Mater. 2004, 16, 1393-1399.

79

Watanabe, S.; Inukai, K.; Mizuta, S.; Miyahara, M. T. Mechanism for stripe pattern formation on hydrophilic surfaces by using convective self-assembly. Langmuir 2009, 25, 7287-7295.

80

Meijer, J. M.; Hagemans, F.; Rossi, L.; Byelov, D. V.; Castillo, S. I. R.; Snigirev, A.; Snigireva, I.; Philipse, A. P.; Petukhov, A. V. Self-assembly of colloidal cubes via vertical deposition. Langmuir 2012, 28, 7631-7638.

81

Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 2005, 437, 640-647.

82

Xie, S. F.; Zhou, X.; Han, X. G.; Kuang, Q.; Jin, M. S.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Supercrystals from crystallization of octahedral mno nanocrystals. J. Phys. Chem. C 2009, 113, 19107-19111.

83

Talapin, D. V.; Shevchenko, E. V.; Murray, C. B.; Kornowski, A.; Förster, S.; Weller, H. CdSe and CdSe/CdS nanorod solids. J. Am. Chem. Soc. 2004, 126, 12984-12988.

84

Bao, S. X.; Zhang, J. W.; Jiang, Z. Y.; Zhou, X.; Xie, Z. X. Understanding the formation of pentagonal cyclic twinned crystal from the solvent dependent assembly of Au nanocrystals into their colloidal crystals. J. Phys. Chem. Lett. 2013, 4, 3440-3444.

85

Binks, B. P. Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 2002, 7, 21-41.

86

Böker, A.; He, J. B.; Emrick, T.; Russell, T. P. Self-assembly of nanoparticles at interfaces. Soft Matter 2007, 3, 1231-1248.

87

Fan, H.; Leve, E.; Gabaldon, J.; Wright, A.; Haddad, R. E.; Brinker, C. J. Ordered two- and three-dimensional arrays self-assembled from water-soluble nanocrystal-micelles. Adv. Mater. 2005, 17, 2587-2590.

88

Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. D. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 6650-6653.

89

Zhuang, J. Q.; Wu, H. M.; Yang, Y. A.; Cao, Y. C. Controlling colloidal superparticle growth through solvophobic interactions. Angew. Chem. Int. Ed. 2008, 47, 2208-2212.

90

Fang, X. L.; Li, Y.; Chen, C.; Kuang, Q.; Gao, X. Z.; Xie, Z. X.; Xie, S. Y.; Huang, R. B.; Zheng, L. S. pH-induced simultaneous synthesis and self-assembly of 3D layered β-FeOOH nanorods. Langmuir 2009, 26, 2745-2750.

91

Yang, C. W.; Chiu, C. Y.; Huang, M. H. Formation of free- standing supercrystals from the assembly of polyhedral gold nanocrystals by surfactant diffusion in the solution. Chem. Mater. 2014, 26, 4882-4888.

92

Henzie, J.; Grünwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P. D. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 2012, 11, 131-137.

93

Bishop, K. J. M.; Grzybowski, B. A. "Nanoions": Fundamental properties and analytical applications of charged nanoparticles. ChemPhysChem 2007, 8, 2171-2176.

94

Kalsin, A. M.; Kowalczyk, B.; Wesson, P.; Paszewski, M.; Grzybowski, B. A. Studying the thermodynamics of surface reactions on nanoparticles by electrostatic titrations. J. Am. Chem. Soc. 2007, 129, 6664-6665.

95

Kalsin, A. M.; Kowalczyk, B.; Smoukov, S. K.; Klajn, R.; Grzybowski, B. A. Ionic-like behavior of oppositely charged nanoparticles. J. Am. Chem. Soc. 2006, 128, 15046-15047.

96

Kalsin, A. M.; Pinchuk, A. O.; Smoukov, S. K.; Paszewski, M.; Schatz, G. C.; Grzybowski, B. A. Electrostatic aggregation and formation of core-shell suprastructures in binary mixtures of charged metal nanoparticles. Nano Lett. 2006, 6, 1896-1903.

97

Kalsin, A. M.; Grzybowski, B. A. Controlling the growth of "ionic" nanoparticle supracrystals. Nano Lett. 2007, 7, 1018-1021.

98

Akey, A.; Lu, C. G.; Yang, L.; Herman, I. P. Formation of thick, large-area nanoparticle superlattices in lithographically defined geometries. Nano Lett. 2010, 10, 1517-1521.

99

Hamon, C.; Postic, M.; Mazari, E.; Bizien, T.; Dupuis, C.; Even-Hernandez, P.; Jimenez, A.; Courbin, L.; Gosse, C.; Artzner, F. et al. Three-dimensional self-assembling of gold nanorods with controlled macroscopic shape and local smectic B order. ACS Nano 2012, 6, 4137-4146.

100

Xiao, J. Y.; Li, Z.; Ye, X. Z.; Ma, Y. R.; Qi, L. M. Self- assembly of gold nanorods into vertically aligned, rectangular microplates with a supercrystalline structure. Nanoscale 2014, 6, 996-1004.

Publication history
Copyright
Acknowledgements

Publication history

Received: 01 January 2015
Revised: 12 March 2015
Accepted: 15 March 2015
Published: 29 August 2015
Issue date: August 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was partially supported DOE STTR program and CEI grant 68195. C. W. thanks "Dissertation Fellowship Award" supported by the State University of New York at Binghamton; C. S. is partially supported by the Provost's Summer Doctoral Fellowship; and J. Z. acknowledges grants (the National Natural Science Foundation of China (Nos. 21471160 and 14CX05037A)) and TaiShan Scholar Foundation.

Return