Journal Home > Volume 8 , Issue 8

The rational design and precise synthesis of multifunctional hybrid nanostructures with a tailored active core and a large, dendritic, modified mesoporous structured shell can promote catalysis, energy storage, and biological applications. Here, an oil-water biphase stratification coating strategy has been developed to prepare monodisperse magnetic dendritic mesoporous silica core-shell structured nanospheres. These sophisticated Fe3O4@SiO2@dendritic-mSiO2 nanospheres feature large dendritic open pores (2.7 and 10.3 nm). Significantly, the silica shells can be converted into dendritic mesoporous aluminosilicate frameworks with unchanged porosity, a Si/Al molar ratio of 14, and remarkably strong acidic sites, through a post-synthesis approach. In addition, the resultant magnetic dendritic mesoporous aluminosilicate nanospheres exhibit outstanding properties and promising application in phosphate removal from wastewater.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels

Show Author's information Jianping Yang1,2,3Dengke Shen2,4Yong Wei2Wei Li2Fan Zhang2Biao Kong2Shaohua Zhang3Wei Teng1Jianwei Fan1Weixian Zhang1( )Shixue Dou3Dongyuan Zhao2( )
College of Environmental Science and EngineeringState Key Laboratory of Pollution Control and Resources ReuseTongji UniversityShanghai200092China
Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Laboratory of Advanced MaterialsFudan UniversityShanghai200433China
Institute for Superconducting & Electronic MaterialsAustralian Institute of Innovative MaterialsUniversity of WollongongInnovation CampusSquires WayNorth WollongongNSW2500Australia
Key Laboratory of Materials PhysicsCentre for Environmental and Energy NanomaterialsAnhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsHefei Institutes of Physical ScienceChinese Academy of SciencesHefei230031China

Abstract

The rational design and precise synthesis of multifunctional hybrid nanostructures with a tailored active core and a large, dendritic, modified mesoporous structured shell can promote catalysis, energy storage, and biological applications. Here, an oil-water biphase stratification coating strategy has been developed to prepare monodisperse magnetic dendritic mesoporous silica core-shell structured nanospheres. These sophisticated Fe3O4@SiO2@dendritic-mSiO2 nanospheres feature large dendritic open pores (2.7 and 10.3 nm). Significantly, the silica shells can be converted into dendritic mesoporous aluminosilicate frameworks with unchanged porosity, a Si/Al molar ratio of 14, and remarkably strong acidic sites, through a post-synthesis approach. In addition, the resultant magnetic dendritic mesoporous aluminosilicate nanospheres exhibit outstanding properties and promising application in phosphate removal from wastewater.

Keywords: magnetic property, mesoporous materials, core-shell structures, aluminosilicates, surface acid

References(51)

1

Lauhon, L. J.; Gudiksen, M. S.; Wang, D. L.; Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002, 420, 57-61.

2

Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81-87.

3

Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 2008, 7, 333-338.

4

Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445-451.

5

Chen, O.; Riedemann, L.; Etoc, F.; Herrmann, H.; Coppey, M.; Barch, M.; Farrar, C. T.; Zhao, J.; Bruns, O. T.; Wei, H. et al. Magneto-fluorescent core-shell supernanoparticles. Nat. Commun. 2014, 5, 5093.

6

Bigall, N. C.; Parak, W. J.; Dorfs, D. Fluorescent, magnetic and plasmonic-hybrid multifunctional colloidal nano objects. Nano Today 2012, 7, 282-296.

7

Chen, G. Y.; Agren, H.; Ohulchanskyy, T. Y.; Prasad, P. N. Light upconverting core-shell nanostructures: Nanophotonic control for emerging applications. Chem. Soc. Rev. 2015, 44, 1680-1713.

8

Zhang, Q.; Lee, I.; Joo, J. B.; Zaera, F.; Yin, Y. D. Core- shell nanostructured catalysts. Acc. Chem. Res. 2013, 46, 1816-1824.

9

Li, W.; Zhao, D. Y. Extension of the stöber method to construct mesoporous SiO2 and TiO2 shells for uniform multifunctional core-shell structures. Adv. Mater. 2013, 25, 142-149.

10

Xia, Y. N.; Li, W. Y.; Cobley, C. M.; Chen, J. Y.; Xia, X. H.; Zhang, Q.; Yang, M. X.; Cho, E. C.; Brown, P. K. Gold nanocages: From synthesis to theranostic applications. Acc. Chem. Res. 2011, 44, 914-924.

11

Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154-168.

12

He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core-shell noble-metal@metal-organic- framework nanoparticles with highly selective sensing property. Angew. Chem. Int. Ed. 2013, 52, 3741-3745.

13

Hu, M.; Furukawa, S.; Ohtani, R.; Sukegawa, H.; Nemoto, Y.; Reboul, J.; Kitagawa, S.; Yamauchi, Y. Synthesis of prussian blue nanoparticles with a hollow interior by controlled chemical etching. Angew. Chem. Int. Ed. 2012, 51, 984-988.

14

Li, G. L.; Mohwald, H.; Shchukin, D. G. Precipitation polymerization for fabrication of complex core-shell hybrid particles and hollow structures. Chem. Soc. Rev. 2013, 42, 3628-3646.

15

Caruso, F.; Susha, A. S.; Giersig, M.; Möhwald, H. Magnetic core-shell particles: Preparation of magnetite multilayers on polymer latex microspheres. Adv. Mater. 1999, 11, 950-953.

DOI
16

Li, G. L.; Xu, L. Q.; Neoh, K. G.; Kang, E. T. Hairy hybrid microrattles of metal nanocore with functional polymer shell and brushes. Macromolecules 2011, 44, 2365-2370.

17

Li, G. L.; Tai, C. A.; Neoh, K. G.; Kang, E. T.; Yang, X. L. Hybrid nanorattles of metal core and stimuli-responsive polymer shell for confined catalytic reactions. Polym. Chem. 2011, 2, 1368-1374.

18

Sun, X. M.; Li, Y. D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 597-601.

19

Park, J. C.; Song, H. Metal@silica yolk-shell nanostructures as versatile bifunctional nanocatalysts. Nano Res. 2011, 4, 33-49.

20

Guerrero-Martínez, A.; Pérez-Juste, J.; Liz-Marzán, L. M. Recent progress on silica coating of nanoparticles and related nanomaterials. Adv. Mater. 2010, 22, 1182-1195.

21

Zhong, C. J.; Maye, M. M. Core-shell assembled nanoparticles as catalysts. Adv. Mater. 2001, 13, 1507-1511.

DOI
22

Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro- /nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987-4019.

23

Liz-Marzán, L. M.; Mulvaney, P. The assembly of coated nanocrystals. J. Phy. Chem. B 2003, 107, 7312-7326.

24

Li, Z. J.; Zhao, J.; Zhang, M.; Xia, J. Y.; Meng, A. SiC nanowires with thickness-controlled SiO2 shells: Fabrication, mechanism, reaction kinetics and photoluminescence properties. Nano Res. 2014, 7, 462-472.

25

Chen, J. C.; Zhang, R. Y.; Han, L.; Tu, B.; Zhao, D. Y. One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871-879.

26

Zhang, M. L.; Earhart, C.; Ooi, C.; Wilson, R.; Tang, M.; Wang, S. Functionalization of high-moment magnetic nanodisks for cell manipulation and separation. Nano Res. 2013, 6, 745-751.

27

Wang, Y.; Gu, H. C. Core-shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Adv. Mater. 2015, 27, 576-585.

28

Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core- shell nanocatalysts for high-temperature reactions. Nat. Mater. 2009, 8, 126-131.

29

Liu, J.; Qiao, S. Z.; Hartono, S. B.; Lu, G. Q. Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem. Int. Ed. 2010, 49, 4981-4985.

30

Pérez-Lorenzo, M.; Vaz, B.; Salgueiriño, V.; Correa-Duarte, M. A. Hollow-shelled nanoreactors endowed with high catalytic activity. Chem. —Eur. J. 2013, 19, 12196-12211.

31

Xu, Z. C.; Hou, Y. L.; Sun, S. H. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc. 2007, 129, 8698-8699.

32

Wong, Y. J.; Zhu, L. F.; Teo, W. S.; Tan, Y. W.; Yang, Y. H.; Wang, C.; Chen, H. Y. Revisiting the stöber method: Inhomogeneity in silica shells. J. Am. Chem. Soc. 2011, 133, 11422-11425.

33

Ge, J. P.; Zhang, Q.; Zhang, T. R.; Yin, Y. D. Core-satellite nanocomposite catalysts protected by a porous silica shell: Controllable reactivity, high stability, and magnetic recyclability. Angew. Chem. Int. Ed. 2008, 47, 8924-8928.

34

Zhao, W. R.; Gu, J. L.; Zhang, L. X.; Chen, H. R.; Shi, J. L. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J. Am. Chem. Soc. 2005, 127, 8916-8917.

35

Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. 2008, 47, 8438-8441.

36

Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130, 28-29.

37

Yang, J. P.; Shen, D. K.; Zhou, L.; Li, W.; Fan, J. W.; El-Toni, A. M.; Zhang, W. X.; Zhang, F.; Zhao, D. Y. Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy. Adv. Healthcare Mater. 2014, 3, 1620-1628.

38

Yang, J. P.; Shen, D. K.; Zhou, L.; Li, W.; Li, X. M.; Yao, C.; Wang, R.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Spatially confined fabrication of core-shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chem. Mater. 2013, 25, 3030-3037.

39

Yang, J. P.; Zhang, F.; Chen, Y. R.; Qian, S.; Hu, P.; Li, W.; Deng, Y. H.; Fang, Y.; Han, L.; Luqman, M. et al. Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence. Chem. Commun. 2011, 47, 11618-11620.

40

Yang, J. P.; Zhang, F.; Li, W.; Gu, D.; Shen, D. K.; Fan, J. W.; Zhang, W. X.; Zhao, D. Y. Large pore mesostructured cellular silica foam coated magnetic oxide composites with multilamellar vesicle shells for adsorption. Chem. Commun. 2014, 50, 713-715.

41

Qian, X. F.; Du, J. M.; Li, B.; Si, M.; Yang, Y. S.; Hu, Y. Y.; Niu, G. X.; Zhang, Y. H.; Xu, H. L.; Tu, B. et al. Controllable fabrication of uniform core-shell structured zeolite@SBA-15 composites. Chem. Sci. 2011, 2, 2006-2016.

42

Yang, J. P.; Qian, X. F.; Chen, M. J.; Fan, J. W.; Liu, H. K.; Zhang, W. X. A triblock-copolymer-templating route to carbon spheres@SBA-15 large mesopore core-shell and hollow structures. RSC Adv. 2014, 4, 48676-48681.

43

Fang, X. L.; Liu, Z. H.; Hsieh, M. F.; Chen, M.; Liu, P. X.; Chen, C.; Zheng, N. F. Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors. ACS Nano 2012, 6, 4434-4444.

44

Du, X.; Qiao, S. Z. Dendritic silica particles with center- radial pore channels: Promising platforms for catalysis and biomedical applications. Small 2015, 11, 392-413.

45

Shen, D. K.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014, 14, 923-932.

46

Du, X.; Shi, B. Y.; Liang, J.; Bi, J. X.; Dai, S.; Qiao, S. Z. Developing functionalized dendrimer-like silica nanoparticles with hierarchical pores as advanced delivery nanocarriers. Adv. Mater. 2013, 25, 5981-5985.

47

Polshettiwar, V.; Cha, D.; Zhang, X. X.; Basset, J. M. High- surface-area silica nanospheres (KCC-1) with a fibrous morphology. Angew. Chem. Int. Ed. 2010, 49, 9652-9656.

48

Yang, J. P.; Chen, W. Y.; Shen, D. K.; Wei, Y.; Ran, X. Q.; Teng, W.; Fan, J. W.; Zhang, W. X.; Zhao, D. Y. Controllable fabrication of dendritic mesoporous silica-carbon nanospheres for anthracene removal. J. Mater. Chem. A 2014, 2, 11045-11048.

49
Yang, Y. N.; Niu, Y. T.; Zhang, J.; Meka, A. K.; Zhang, H. W.; Xu, C.; Lin, C. X. C.; Yu, M. H.; Yu, C. Z. Biphasic synthesis of large-pore and well-dispersed benzene bridged mesoporous organosilica nanoparticles for intracellular protein delivery. Small, in press, DOI: 10.1002/smll.201402779.https://doi.org/10.1002/smll.201402779
DOI
50

Shin, E. W.; Han, J. S.; Jang, M.; Min, S. H.; Park, J. K.; Rowell, R. M. Phosphate adsorption on aluminum-impregnated mesoporous silicates: Surface structure and behavior of adsorbents. Environ. Sci. Technol. 2004, 38, 912-917.

51

Yang, J.; Zhou, L.; Zhao, L. Z.; Zhang, H. W.; Yin, J. N.; Wei, G. F.; Qian, K.; Wang, Y. H.; Yu, C. Z. A designed nanoporous material for phosphate removal with high efficiency. J. Mater. Chem. 2011, 21, 2489-2494.

File
12274_2015_758_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 January 2015
Revised: 17 February 2015
Accepted: 01 March 2015
Published: 29 August 2015
Issue date: August 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

We acknowledge the financial support from State Key Laboratory of Pollution Control and Resource Reuse Foundation (No. PCRRF14017), the National Natural Science Foundation of China (No. 21210004) and the China Postdoctoral Science Foundation (No. 2014M551455). J. P. Y. appreciates the funding sup- ported by the Commonwealth of Australia through the Automotive Australia 2020 Cooperative Research Centre (Auto CRC) and DP120101194. The authors would like to thank Dr. T. Silver for critical reading of this manuscript.

Return