Journal Home > Volume 8 , Issue 8

A few-layered MoS2-C composite material is studied as a supporting material for silicon nanopowder. Microspheres of the few-layered MoS2-C composite embedded with 30 wt.% Si nanopowder are prepared by one-pot spray pyrolysis. The Si nanopowder particles with high capacity are completely surrounded by the few-layered MoS2-C composite matrix. The discharge capacities of the MoS2-C composite microspheres with and without 30 wt.% Si nanopowder after 100 cycles are 1, 020 and 718 mAh·g-1 at a current density of 1, 000 mA·g-1, respectively. The spherical morphology of the MoS2-C composite microspheres embedded with Si nanopowder is preserved even after 100 cycles because of their high structural stability during cycling. The MoS2-C composite layer prevents the formation of unstable solid-electrolyte interface (SEI) layers on the Si nanopowder. Furthermore, as the MoS2-C composite matrix exhibits high capacity and excellent cycling performance, these characteristics are also reflected in the MoS2-C composite microspheres embedded with 30 wt.% Si nanopowder.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced Li+ storage properties of few-layered MoS2-C composite microspheres embedded with Si nanopowder

Show Author's information Seung Ho ChoiYun Chan Kang( )
Department of Materials Science and EngineeringKorea UniversityAnam-DongSeongbuk-GuSeoul 136-713Republic of Korea

Abstract

A few-layered MoS2-C composite material is studied as a supporting material for silicon nanopowder. Microspheres of the few-layered MoS2-C composite embedded with 30 wt.% Si nanopowder are prepared by one-pot spray pyrolysis. The Si nanopowder particles with high capacity are completely surrounded by the few-layered MoS2-C composite matrix. The discharge capacities of the MoS2-C composite microspheres with and without 30 wt.% Si nanopowder after 100 cycles are 1, 020 and 718 mAh·g-1 at a current density of 1, 000 mA·g-1, respectively. The spherical morphology of the MoS2-C composite microspheres embedded with Si nanopowder is preserved even after 100 cycles because of their high structural stability during cycling. The MoS2-C composite layer prevents the formation of unstable solid-electrolyte interface (SEI) layers on the Si nanopowder. Furthermore, as the MoS2-C composite matrix exhibits high capacity and excellent cycling performance, these characteristics are also reflected in the MoS2-C composite microspheres embedded with 30 wt.% Si nanopowder.

Keywords: silicon, spray pyrolysis, molybdenum sulfide, anode material, lithium batteries

References(59)

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

2

Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 2011, 23, 1695-1715.

3

Cho, J. Porous Si anode materials for lithium rechargeable batteries. J. Mater. Chem. 2010, 20, 4009-4014.

4

Szczech, J. R.; Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 2011, 4, 56-72.

5

Magasinki, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353-358.

6

McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 2013, 25, 4966-4984.

7

Choi, N. S.; Chen, Z. h.; Freunberger, S. A.; Ji, X. l.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing lithium batteries and electrical double- layer capacitors. Angew. Chem. Int. Ed. 2012, 51, 9994-10024.

8

Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414-429.

9

Li, X. L.; Zhi, L. J. Managing voids of Si anodes in lithium ion batteries. Nanoscale 2013, 5, 8864-8873.

10

Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

11

Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 2012, 6, 1522-1531.

12

Huang, X. K.; Yang, J.; Mao, S.; Chang, J. B.; Hallac, P. B.; Fell, C. R.; Metz, B.; Jiang, J. W.; Hurley, P. T.; Chen, J. H. Controllable synthesis of hollow Si anode for long-cycle- life lithium-ion batteries. Adv. Mater. 2014, 26, 4326-4332.

13

Liang, J. W.; Li, X. N.; Zhu, Y. C.; Guo, C.; Qian, Y. T. Hydrothermal synthesis of nano-silicon from silica sol and its lithium ion batteries property. Nano Res. 2015, 8, 1497-1504.

14

Li, X. L.; Meduri, P.; Chen, X. L.; Qi, W.; Engelhard, M. H.; Xu, W.; Ding, F.; Xiao, J.; Wang, W.; Wang, C. M. et al. Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes. J. Mater. Chem. 2012, 22, 11014- 11017.

15

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187-192.

16

Park, Y.; Choi, N. S.; Park, S.; Woo, S. H.; Sim, S.; Jang, B. Y.; Oh, S. M.; Park, S.; Cho, J.; Lee, K. T. Si-encapsulating hollow carbon electrodes via electroless etching for lithium- ion batteries. Adv. Energy Mater. 2013, 3, 206-212.

17

Karki, K.; Zhu, Y. J.; Liu, Y.H.; Sun, C. F.; Hu, L. B.; Wang, Y. H.; Wang, C. S.; Cumings, J. Hoop-strong nanotubes for battery electrodes. ACS Nano 2013, 7, 8295-8302.

18

Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844-3847.

19

Ge, M. Y.; Rong, J. P.; Fang, X.; Zhou, C. W. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012, 12, 2318-2323.

20

Ge, M. Y.; Rong, J. P.; Fang, X.; Zhang, A. Y.; Lu, Y. H.; Zhou, C. W. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174-181.

21

Yoo, J. K.; Kim, J.; Jung, Y. S.; Kang, K. Scalable fabrication of silicon nanotubes and their application to energy storage. Adv. Mater. 2012, 24, 5452-5456.

22

Kasavajjula, U.; Wang, C. S.; Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003-1039.

23

Lai, J.; Guo, H. J.; Wang, Z. X.; Li, X. H.; Zhang, X. P.; Wu, F. X.; Yue, P. Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries. J. Alloys Compd. 2012, 530, 30-35.

24

Holzapfel, M.; Buqa, H.; Scheifele, W.; Novák, P.; Petrat, F. M. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chem. Commun. 2005, 1566-1568.

25

Wen, Z. S.; Yang, J.; Wang, B. F.; Wang, K.; Liu, Y. High capacity silicon/carbon composite anode materials for lithium ion batteries. Electrochem. Commun. 2003, 5, 165-168.

26

Su, L. W.; Zhou, Z.; Ren, M. M. Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries. Chem. Commun. 2010, 46, 2590-2592.

27

Xu, Y. H.; Zhu, Y. J.; Wang, C. S. Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 9751-9757.

28

Jung, D. S.; Hwang, T. H.; Park, S. B.; Choi, J. W. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. Nano Lett. 2013, 13, 2092-2097.

29

Fuchsbichler, B.; Stangl, C.; Kren, H.; Uhlig, F.; Koller, S. High capacity graphite-silicon composite anode material for lithium-ion batteries. J. Power Sources 2011, 196, 2889-2892.

30

Park, J. B.; Lee, K. H.; Jeon, Y. J.; Lim, S. H.; Lee, S. M. Si/C composite lithium-ion battery anodes synthesized using silicon nanoparticles from porous silicon. Electrochim. Acta 2014, 133, 73-81.

31

Wang, B.; Li, X. L.; Zhang, X. F.; Luo, B.; Jin, M. H.; Liang, M. H.; Dayeh, S. A.; Picraux, S. T.; Zhi, L. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano 2013, 7, 1437-1445.

32

Wang, W.; Ruiz, I.; Ahmed, K.; Bay, H. H.; George, A. S.; Wang, J.; Butler, J.; Ozkan, M.; Ozkan, C. S. Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes. Small 2014, 10, 3389-3396.

33

Lin, H. J.; Weng, W.; Ren, J.; Qiu, L. B.; Zhang, Z. T.; Chen, P. N.; Chen, X. L.; Deng, J.; Wang, Y. G.; Peng, H. S. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater. 2014, 26, 1217-1222.

34

Chang, J. B.; Huang, X. K.; Zhou, G. H.; Cui, S. M.; Hallac, P. B.; Jiang, J. W.; Hurley, P. T.; Chen, J. H. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high- performance lithium-ion battery anode. Adv. Mater. 2014, 26, 758-764.

35

Luo, J. Y.; Zhao, X.; Wu, J. S.; Jang, H. D.; Kung, H. H.; Huang, J. X. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 2012, 3, 1824-1829.

36

Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315-3321.

37

Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364-5457.

38

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166-5180.

39

Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170-E192.

40

Armstrong, M. J.; O'Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1-62.

41

An, Q. Y.; Lv, F.; Liu, Q. Q.; Han, C. H.; Zhao, K. N.; Sheng, J. Z.; Wei, Q. L.; Yan, M. Y.; Mai, L. Q. Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett. 2014, 14, 6250-6256.

42

Wang, H.; Feng, H. B.; Li, J. H. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. Small 2014, 10, 2165-2181.

43

Huang, X.; Tan, C. L.; Yin, Z. Y.; Zhang, H. 25th anniversary article: Hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 2014, 26, 2185-2204.

44

Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209-231.

45

Zhu, C. B.; Mu, X. K.; van Aken, P. A.; Yu, Y.; Maier, J. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 2014, 53, 2152-2156.

46

Hwang, H.; Kim, H.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826-4830.

47

Wang, Z.; Chen, T.; Chen, W. X.; Chang, K.; Ma, L.; Huang, G. C.; Chen, D. Y.; Lee, J. Y. CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J. Mater. Chem. A 2013, 1, 2202-2210.

48

Zhang, Q.; Ge, J. P.; Goebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Rattle-type silica colloidal particles prepared by a surface- protected etching process. Nano Res. 2009, 2, 583-591.

49

Zhang, C. F.; Peng, X.; Guo, Z. P.; Cai, C. B.; Chen, Z. X.; Wexler, D.; Li, S.; Liu, H. K. Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon 2012, 50, 1897-1903.

50

Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538-1544.

51

Wang, Q.; Li, J. H. Facilitated lithium storage in MoS2 overlayers supported on coaxial carbon nanotubes. J. Phys. Chem. C 2007, 111, 1675-1682.

52

Ko, Y. N.; Kang, Y. C.; Park, S. B. Superior electrochemical properties of MoS2 powders with a MoS2@void@MoS2 configuration. Nanoscale 2014, 6, 4508-4512.

53

Chang, K.; Geng, D. S.; Li, X. F.; Yang, J. L.; Tang, Y. J.; Cai, M.; Li, R. Y.; Sun, X. L. Ultrathin MoS2/nitrogen-doped graphene nanosheets with highly reversible lithium storage. Adv. Energy Mater. 2013, 3, 839-844.

54

Huang, G. C.; Chen, T.; Chen, W. X.; Wang, Z.; Chang, K.; Ma, L.; Huang, F. H.; Chen, D. Y.; Lee, J. Y. Graphene-like MoS2/graphene composites: Cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. Small 2013, 9, 3693-3703.

55

Liu, H.; Su, D. W.; Zhou, R. F.; Sun, B.; Wang, G. X.; Qiao, S. Z. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2012, 2, 970-975.

56

Gong, Y. J.; Yang, S. B.; Liu, Z.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. Graphene-network-backboned architectures for high- performance lithium storage. Adv. Mater. 2013, 25, 3979- 3984.

57

Liu, N. A.; Huo, K. F.; McDowell, M. T.; Zhao, J.; Cui, Y. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci. Rep. 2013, 3, 1919.

58

Choi, S. H.; Kang, Y. C. Yolk-shell, hollow, and single- crystalline ZnCo2O4 powders: Preparation using a simple one-pot process and application in lithium-ion batteries. ChemSusChem 2013, 6, 2111-2116.

59

Ko, Y. N.; Park, S. B.; Kang, Y. C. Design and fabrication of new nanostructured SnO2-carbon composite microspheres for fast and stable lithium storage performance. Small 2014, 10, 3240-3245.

File
12274_2015_757_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 November 2014
Revised: 24 February 2015
Accepted: 01 March 2015
Published: 29 August 2015
Issue date: August 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by the National Research Foundation of Republic of Korea (NRF) grant funded by the Republic of Korea government (MEST) (No. 2012R1A2A2A02046367). This work was supported by the Creative Industrial Technology Development Program (No. 10045141) funded By the Ministry of Trade, industry & Energy (MI, Republic of Korea).

Return