AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Energy harvesting model of moving water inside a tubular system and its application of a stick-type compact triboelectric nanogenerator

Dongwhi Choi1,§Sangmin Lee2,§Sang Min Park1Handong Cho1Woonbong Hwang1Dong Sung Kim1( )
Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam-roPohang, Gyeongbuk790-784Republic of Korea
School of Mechanical EngineeringChung-Ang University84 Heukseok-roDongjak-gu, Seoul156-756Republic of Korea

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

As the first invention to efficiently harvest electricity from ambient mechanical energy by using contact electrification, the triboelectric nanogenerator has elicited worldwide attention because of its cost-effectiveness and sustainability. This study exploits a superhydrophobic nanostructured aluminum tube to estimate electrical output for solid-water contact electrification inside a tubular system. The linearly proportional relationship of short-circuit current and open-circuit voltage to the detaching speed of water was determined by using a theoretical energy harvesting model and experimentation. A pioneering stick-type solid-water interacting triboelectric nanogenerator, called a SWING stick, was developed to harvest mechanical energy through solid-water contact electrification generated when the device is shaken by hand. The electrical output generated by various kinds of water from the environment was also measured to demonstrate the concept of the SWING stick as a compact triboelectric nanogenerator. Several SWING sticks were connected to show the feasibility of the device as a portable and compact source of direct power. The developed energy harvesting model and the SWING stick can provide a guideline for the design parameters to attain a desired electrical output; therefore, this study can significantly increase the applicability of a water-driven triboelectric nanogenerator.

Electronic Supplementary Material

Video
12274_2015_756_MOESM2_ESM.mov
Download File(s)
12274_2015_756_MOESM1_ESM.pdf (689.3 KB)

References

1

Brown, K. S. Bright future--or brief flare--for renewable energy? Science 1999, 285, 678-680.

2

Dincer, I. Renewable energy and sustainable development: A crucial review. Renewable Sustainable Energy Rev. 2000, 4, 157-175.

3

Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32, 912-919.

4

Zhu, G.; Lin, Z. -H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847-853.

5

Yang, Y.; Zhu, G.; Zhang, H. L.; Chen, J.; Zhong, X. D.; Lin, Z. -H.; Su, Y. J.; Bai, P.; Wen, X. N.; Wang, Z. L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 2013, 7, 9461-9468.

6

Wen, X. N.; Yang, W. Q.; Jing, Q. S.; Wang, Z. L. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano 2014, 8, 7405-7412.

7

Lee, S.; Hong, J. I.; Xu, C.; Lee, M.; Kim, D.; Lin, L.; Hwang, W.; Wang, Z. L. Toward robust nanogenerators using aluminum substrate. Adv. Mater. 2012, 24, 4398-4402.

8

Baytekin, H. T.; Patashinski, A. Z.; Branicki, M.; Baytekin, B.; Soh, S.; Grzybowski, B. A. The mosaic of surface charge in contact electrification. Science 2011, 333, 308-312.

9

Baytekin, H. T.; Baytekin, B.; Soh, S.; Grzybowski, B. A. Is water necessary for contact electrification? Angew. Chem. Int. Ed. 2011, 50, 6766-6770.

10

Terris, B. D.; Stern, J. E.; Rugar, D.; Mamin, H. J. Contact electrification using force microscopy. Phys. Rev. Lett. 1989, 63, 2669.

11

McCarty, L. S.; Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chem. Int. Ed. 2008, 47, 2188-2207.

12

Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282- 2289.

13

Lin, Z. -H.; Cheng, G.; Wu, W. Z.; Pradel, K. C.; Wang, Z. L. Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor. ACS Nano 2014, 8, 6440-6448.

14

Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

15

Nguyen, V.; Yang, R. S. Effect of humidity and pressure on the triboelectric nanogenerator. Nano Energy 2013, 2, 604-608.

16

Bai, P.; Zhu, G.; Liu, Y.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Ma, J. S.; Zhang, G.; Wang, Z. L. Cylindrical rotating triboelectric nanogenerator. ACS Nano 2013, 7, 6361-6366.

17

Choi, D.; Lee, H.; Im, D. J.; Kang, I. S.; Lim, G.; Kim, D. S.; Kang, K. H. Spontaneous electrical charging of droplets by conventional pipetting. Sci. Rep. 2013, 3, 2037.

18

Choi, D.; Kim, D. S. A zeta (ζ)-pipet tip to reduce the spontaneously induced electrical charge of a dispensed aqueous droplet. Langmuir 2014, 30, 6644-6648.

19

Lin, Z. H.; Cheng, G.; Lin, L.; Lee, S.; Wang, Z. L. Water-solid surface contact electrification and its use for harvesting liquid- wave energy. Angew. Chem. Int. Ed. 2013, 52, 12545-12549.

20

Cheng, G.; Lin, Z. -H.; Du, Z. -L.; Wang, Z. L. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano 2014, 8, 1932-1939.

21

Zhu, G.; Su, Y. J.; Bai, P.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Wang, Z. L. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 2014, 8, 6031- 6036.

22

Kwon, S. H.; Park, J.; Kim, W. K.; Yang, Y. J.; Lee, E.; Han, C. J.; Park, S. Y.; Lee, J.; Kim, Y. S. An effective energy harvesting method from natural water motion active transducer. Energy Environ. Sci. 2014, 7, 3279-3283.

23

Lin, Z. H.; Cheng, G.; Lee, S.; Pradel, K. C.; Wang, Z. L. Harvesting water drop energy by a sequential contact- electrification and electrostatic-induction process. Adv. Mater. 2014, 27, 4690-4696.

24

Kim, Y.; Lee, S.; Cho, H.; Park, B.; Kim, D.; Hwang, W. Robust superhydrophilic/hydrophobic surface based on self- aggregated Al2O3 nanowires by single-step anodization and self-assembly method. ACS Appl. Mater. Interfaces 2012, 4, 5074-5078.

25

Ravelo, B.; Duval, F.; Kane, S.; Nsom, B. Demonstration of the triboelectricity effect by the flow of liquid water in the insulating pipe. J. Electrost. 2011, 69, 473-478.

26

Yatsuzuka, K.; Mizuno, Y.; Asano, K. Electrification phenomena of pure water droplets dripping and sliding on a polymer surface. J. Electrost. 1994, 32, 157-171.

27

Zhu, G.; Zhou, Y. S.; Bai, P.; Meng, X. S.; Jing, Q. S.; Chen, J.; Wang, Z. L. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro- grating sliding electrification. Adv. Mater. 2014, 26, 3788-3796.

Nano Research
Pages 2481-2491
Cite this article:
Choi D, Lee S, Park SM, et al. Energy harvesting model of moving water inside a tubular system and its application of a stick-type compact triboelectric nanogenerator. Nano Research, 2015, 8(8): 2481-2491. https://doi.org/10.1007/s12274-015-0756-4

660

Views

95

Crossref

N/A

Web of Science

100

Scopus

0

CSCD

Altmetrics

Received: 21 January 2015
Revised: 20 February 2015
Accepted: 26 February 2015
Published: 29 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return