AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Ultrafast photoinduced dynamics in quantum dot-based systems for light harvesting

Kaibo ZhengKhadga KarkiKarel ŽídekTõnu Pullerits( )
Department of Chemical PhysicsLund UniversityBox 12422100Lund, Sweden
Show Author Information

Graphical Abstract

Abstract

Colloidal semiconductor nanocrystals, referred to as quantum dots, offer simple low-temperature solution-based methods for constructing optoelectronic devices such as light emitting diodes and solar cells. We review recent progress in the understanding of photoinduced processes in key components of a certain type of quantum dot solar cells where the dots sensitize a suitable metal oxide, such as ZnO or TiO2, for electron injection, and NiO for hole injection. The electron and hole injection dynamics are discussed in detail as a function of the quantum dot size and core-shell structure, the linker molecule type, and the morphology of the accepting metal oxide. Hole trapping is identified as a major factor limiting the performance of quantum dot-based devices. We review possible strategies for improvement that use core-shell structures and directed excitation energy transfer between quantum dots. Finally, the generation and injection of multiple excitons are revisited. We show that the assumption of a linear relationship between the intensity of transient absorption signal and the number of excitons does not generally hold, and this observation can partially explain highly disparate results for the efficiency of generating multiple excitons. A consistent calculation procedure for studies of multiple exciton generation is provided. Finally, we offer a brief personal outlook on the topic.

References

1

Leutwyler, W. K.; Bürgi, S. L.; Burgl, H. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933-937.

2

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close- packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545-610.

3

Scholes, G. D. Selection rules for probing biexcitons and electron spin transitions in isotropic quantum dot ensembles. J. Chem. Phys. 2004, 121, 10104-10110.

4

Prabhakaran, P.; Kim, W. J.; Lee, K. S.; Prasad, P. N. Quantum dots (QDs) for photonic applications. Opt. Mater. Express 2012, 2, 578.

5

Zrazhevskiy, P.; Gao, X. H. Quantum dot imaging platform for single-cell molecular profiling. Nat. Commun. 2013, 4, 1619.

6

Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S.; Banin, U. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 2002, 295, 1506-1508.

7

Kamat, P. V. Quantum dot solar cells. The next big thing in photovoltaics. J. Phys. Chem. Lett. 2013, 4, 908-918.

8

Kramer, I. J.; Sargent, E. H. The architecture of colloidal quantum dot solar cells: Materials to devices. Chem. Rev. 2014, 114, 863-882.

9

Klimov, V. I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 2007, 58, 635-673.

10

Ross, R. T.; Nozik, A. J. Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 1982, 53, 3813-3818.

11

Chuang, C. H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796-801.

12

Kietzmann, R.; Willig, F.; Weller, H.; Vogel, R.; Nath, D. N.; Eichberger, R.; Liska, P.; Lehnert, J. Picosecond time resolved electron injection from excited cresyl violet monomers and Cd3P2 quantum dots into TiO2. Mol. Cryst. Liq. Cryst. 2006, 194, 169-180.

13

Robel, I.; Kuno, M.; Kamat, P. V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 4136-4137.

14

Guijarro, N.; Shen, Q.; Giménez, S.; Mora-Seró, I.; Bisquert, J.; Lana-Villarreal, T.; Toyoda, T.; Gómez, R. Direct correlation between ultrafast injection and photoanode performance in quantum dot sensitized solar cells. J. Phys. Chem. C 2010, 114, 22352-22360.

15

Abdellah, M.; Žídek, K.; Zheng, K. B. ; Chábera, P.; Messing, M. E.; Pullerits, T. balancing electron transfer and surface passivation in gradient CdSe/ZnS core-shell quantum dots attached to ZnO. J. Phys. Chem. Lett. 2013, 4, 1760-1765.

16

Tvrdy, K.; Frantsuzov, P. A; Kamat, P. V. photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 29-34.

17

Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 2007, 7, 1793-1798.

18

Tisdale, W. A; Zhu, X. Y. Surface chemistry special feature: Artificial atoms on semiconductor surfaces. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 965-970.

19

Blackburn, J. L.; Selmarten, D. C.; Nozik, A. J. Electron transfer dynamics in quantum dot/titanium dioxide composites formed by in situ chemical bath deposition. J. Phys. Chem. B 2003, 107, 14154-14157.

20
Klimov, V. I. Nanocrystal Quantum Dots; Klimov, V. I., Ed.; CRC Press, 2010.
21

Pattantyus-Abraham, A. G.; Kramer, I. J.; Barkhouse, A. R.; Wang, X. H.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M. K.; Grätzel, M.; Sargent, E. H. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 2010, 4, 3374-3380.

22

Yang, Y.; Rodríguez-Córdoba, W.; Xiang, X.; Lian, T. Q. Strong electronic coupling and ultrafast electron transfer between PbS quantum dots and TiO2 nanocrystalline films. Nano Lett. 2012, 12, 303-309.

23

Tisdale, W. A; Williams, K. J.; Timp, B. A; Norris, D. J.; Aydil, E. S.; Zhu, X. Y. Hot-electron transfer from semiconductor nanocrystals. Science 2010, 328, 1543-1547.

24

Luther, J. M.; Beard, M. C.; Song, Q.; Law, M.; Ellingson, R. J.; Nozik, A. J. Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Lett. 2007, 7, 1779-1784.

25

Žídek, K.; Zheng, K. B.; Ponseca, C. S.; Messing, M. E.; Wallenberg, L. R.; Chábera, P.; Abdellah, M.; Sundström, V.; Pullerits, T.; Zídek, K. Electron transfer in quantum-dot- sensitized zno nanowires: ultrafast time-resolved absorption and terahertz study. J. Am. Chem. Soc. 2012, 134, 12110-12117.

26

Leatherdale, C. A.; Bawendi, M. G. Observation of solvatochromism in CdSe colloidal quantum dots. Phys. Rev. B 2001, 63, 165315.

27

Zídek, K.; Abdellah, M.; Zheng, K. B.; Pullerits, T. Electron relaxation in the CdSe quantum dot-ZnO composite: Prospects for photovoltaic applications. Sci. Rep. 2014, 4, 7244.

28

Žídek, K.; Zheng, K. B.; Abdellah, M.; Chábera, P.; Pullerits, T.; Tachyia, M. Simultaneous creation and recovery of trap states on quantum dots in a photoirradiated CdSe-ZnO system. J. Phys. Chem. C 2014, 118, 27567-27573.

29

Žídek, K.; Zheng, K. B.; Chábera, P.; Abdellah, M.; Pullerits, T. Quantum dot photodegradation due to CdSe-ZnO charge transfer: Transient absorption study. Appl. Phys. Lett. 2012, 100, 243111.

30

Adams, D. M.; Brus, L.; Chidsey, C. E. D.; Creager, S.; Creutz, C.; Kagan, C. R.; Kamat, P. V.; Lieberman, M.; Lindsay, S.; Marcus, R. A. et al. Charge transfer on the nanoscale: Current status. J. Phys. Chem. B 2003, 107, 6668-6697.

31

Carlson, B.; Leschkies, K. S.; Aydil, E. S.; Zhu, X. Y. Valence band alignment at cadmium selenide quantum dot and zinc oxide (1010) interfaces. J. Phys. Chem. C 2008, 112, 8419-8423.

32

Cánovas, E.; Moll, P.; Jensen, S. A; Gao, Y.; Houtepen, A. J.; Siebbeles, L. D. a; Kinge, S.; Bonn, M. Size-dependent electron transfer from PbSe quantum dots to SnO2 monitored by picosecond terahertz spectroscopy. Nano Lett. 2011, 11, 5234-5239.

33

Katoh, R.; Furube, A.; Hara, K.; Murata, S.; Sugihara, H.; Arakawa, H.; Tachiya, M. Efficiencies of electron injection from excited sensitizer dyes to nanocrystalline ZnO films as studied by near-IR optical absorption of injected electrons. J. Phys. Chem. B 2002, 106, 12957-12964.

34

Zheng, K. B.; Žídek, K.; Abdellah, M.; Chábera, P.; Abd El-sadek, M. S.; Pullerits, T. Effect of metal oxide morphology on electron injection from CdSe quantum dots to ZnO. Appl. Phys. Lett. 2013, 102, 163119.

35

Ellingson, R. J.; Asbury, J. B.; Ferrere, S.; Ghosh, H. N.; Sprague, J. R.; Lian, T.; Nozik, A. J. Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with[Ru(4, 4'-Dicarboxy-2, 2'-Bipyridine)2(NCS)2] by infrared transient absorption. J. Phys. Chem. B 1998, 102, 6455-6458.

36

Němec, H.; Rochford, J.; Taratula, O.; Galoppini, E.; Kužel, P.; Polívka, T.; Yartsev, A.; Sundström, V. Influence of the electron-cation interaction on electron mobility in dye- sensitized ZnO and TiO2 nanocrystals: A study using ultrafast terahertz spectroscopy. Phys. Rev. Lett. 2010, 104, 197401.

37

Meulenberg, R. W.; Lee, J. R. I.; Wolcott, A.; Zhang, J. Z.; Terminello, L. J.; van Buuren, T. Determination of the exciton binding energy in CdSe quantum dots. ACS Nano 2009, 3, 325-330.

38

Shalom, M.; Dor, S.; Ruhle, S.; Grinis, L.; Zaban, A. Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. J. Phys. Chem. C 2009, 113, 3895-3898.

39

Guijarro, N.; Campiña, J. M.; Shen, Q.; Toyoda, T.; Lana- Villarreal, T.; Gómez, R. Uncovering the Role of the ZnS Treatment in the Performance of Quantum Dot Sensitized Solar Cells. Phys. Chem. Chem. Phys. 2011, 13, 12024-12032.

40

Abdellah, M.; Marschan, R.; Žídek, K.; Messing, M. E.; Abdelwahab, A.; Chábera, P.; Zheng, K. B.; Pullerits, T. Hole trapping: The critical factor for quantum dot sensitized solar cell performance. J. Phys. Chem. C 2014, 118, 25802- 25808.

41

Hansen, T.; Žídek, K.; Zheng, K. B.; Abdellah, M.; Chábera, P.; Persson, P.; Pullerits, T. Orbital topology controlling charge injection in quantum-dot-sensitized solar cells. J. Phys. Chem. Lett. 2014, 5, 1157-1162.

42

Pernik, D. R.; Tvrdy, K.; Radich, J. G.; Kamat, P. V. Tracking the adsorption and electron injection rates of CdSe quantum dots on TiO2: Linked versus direct attachment. J. Phys. Chem. C 2011, 115, 13511-13519.

43

Guijarro, N.; Lana-Villarreal, T.; Shen, Q.; Toyoda, T.; Gómez, R. Sensitization of titanium dioxide photoanodes with cadmium selenide quantum dots prepared by SILAR: Photoelectrochemical and carrier dynamics studies. J. Phys. Chem. C 2010, 114, 21928-21937.

44

Dibbell, R. S.; Watson, D. F. Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2 nanoparticles. J. Phys. Chem. C 2009, 113, 3139-3149.

45

Chakrapani, V.; Baker, D.; Karmat, P. V. Understanding the role of the sulfide redox couple (S2-/Sn2-) in quantum dot sensitized solar cells. J. Am. Chem. Soc. 2011, 133, 9607-9615.

46

Kamat, P. V; Christians, J. A.; Radich, J. G. Quantum dot solar cells: Hole transfer as a limiting factor in boosting the photoconversion efficiency. Langmuir 2014, 30, 5716-5725.

47

Wang, Z. J.; Shakya, A.; Gu, J. S.; Lian, S. C.; Maldonado, S. Sensitization of p-GaP with CdSe quantum dots: Light- stimulated hole injection. J. Am. Chem. Soc. 2013, 135, 9275-9278.

48

Barceló, I.; Guillén, E.; Lana-Villarreal, T.; Gómez, R. Preparation and characterization of nickel oxide photocathodes sensitized with colloidal cadmium selenide quantum dots. J. Phys. Chem. C 2013, 117, 22509-22517.

49

Jones, M.; Lo, S. S.; Scholes, G. D. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. Proc. Natl. Acad. Sci. 2009, 106, 3011-3016.

50

Carter, A. C.; Bouldin, C. E.; Kemner, K. M.; Bell, M. I.; Woicik, J. C.; Majetich, S. A. Surface structure of cadmium selenide nanocrystallites. Phys. Rev. B 1997, 55, 13822.

51

Gómez-Campos, F.; Califano, M. Hole surface trapping in CdSe nanocrystals: Dynamics, rate fluctuations, and implications for blinking. Nano Lett. 2012, 12, 4508-4517.

52

Abdellah, M.; Karki, K.; Lenngren, N.; Zheng, K. B.; Pascher, T.; Yartsev, A.; Pullerits, T. Ultra long-lived radiative trap states in CdSe quantum dots. J. Phys. Chem. C 2014, 118, 21682-21686.

53

Chestnoy, N.; Harris, T. D.; Hull, R.; Brus, L. E. Luminescence and photophysics of cadmium sulfide semiconductor clusters: The nature of the emitting electronic state. J. Phys. Chem. 1986, 90, 3393-3399.

54

Mooney, J.; Krause, M. M.; Saari, J. I.; Kambhampati, P. Challenge to the deep-trap model of the surface in semiconductor nanocrystals. Phys. Rev. B 2013, 87, 081201.

55

Zheng, K. B.; Židek, K.; Abdellah, M.; Zhang, W.; Chábera, P.; Lenngren, N.; Yartsev, A.; Yartsev, A.; Pullerits, T. Ultrafast charge transfer from CdSe quantum dots to p-type NiO: Hole injection vs. hole trapping. J. Phys. Chem. C 2014, 118, 18462-18471.

56

Nazzal, A. Y.; Qu, L. H.; Peng, X. G.; Xiao, M. Photoactivated CdSe nanocrystals as nanosensors for gases. Nano Lett. 2003, 3, 819-822.

57

Wuister, S. F.; de Mello Donega, C.; Meijerink, A. Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J. Phys. Chem. B 2004, 108, 17393-17397.

58

Malko, A. V.; Mikhailovsky, A. A.; Petruska, M. A.; Hollingsworth, J. A.; Klimov, V. I. Interplay between optical gain and photoinduced absorption in CdSe nanocrystals. J. Phys. Chem. B 2004, 108, 5250-5255.

59

Rowland, C. E.; Schaller, R. D. Exciton fate in semiconductor nanocrystals at elevated temperatures: hole trapping outcompetes exciton deactivation. J. Phys. Chem. C 2013, 117, 17337-17343.

60

Abdellah, M.; Marschan, R.; Židek, K.; Messing, M. E.; Abdelwahab, A.; Chábera, P.; Zheng, K. B.; Pullerits, T. Hole trapping: The critical factor for quantum dot sensitized solar cell performance. J. Phys. Chem. C 2014, 118, 25802- 25808.

61

Agrawal, R.; Paci, J. T.; Espinosa, H. D. Large-scale density functional theory investigation of failure modes in ZnO nanowires. Nano Lett. 2010, 10, 3432-3438.

62

Guo, W. Z.; Li, J. J.; Wang, Y.; Peng, X. G. Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: Superior chemical, photochemical and thermal stability. J. Am. Chem. Soc. 2003, 125, 3901-3909.

63

Zhu, H. M.; Song, N. H.; Lian, T. Q. Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses. J. Am. Chem. Soc. 2010, 15038-15045.

64

Bae, W. K.; Kwak, J.; Park, J. W.; Char, K.; Lee, C.; Lee, S. Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient. Adv. Mater. 2009, 21, 1690-1694.

65

Ning, Z. J.; Voznyy, O.; Pan, J.; Hoogland, S.; Adinolfi, V.; Xu, J. X.; Li, M.; Kirmani, A. R.; Sun, J. -P.; Minor, J. et al. . Air-stable N-Type colloidal quantum dot solids. Nat. Mater. 2014, 13, 822-828.

66

Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D. et al. Colloidal-quantum-dot photovoltaics using atomic- ligand passivation. Nat. Mater. 2011, 10, 765-771.

67

Ning, Z. J.; Ren, Y.; Hoogland, S.; Voznyy, O.; Levina, L.; Stadler, P.; Lan, X. Z.; Zhitomirsky, D.; Sargent, E. H. All- inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Adv. Mater. 2012, 24, 6295-6299.

68

Bae, W. K.; Char, K.; Hur, H.; Lee, S. Single-step synthesis of quantum dots with chemical composition gradients. Chem. Mater. 2008, 20, 531-539.

69

Morandeira, A.; Boschloo, G.; Hagfeldt, A.; Hammarström, L. Coumarin 343-NiO Films as nanostructured photocathodes in dye-sensitized solar cells: Ultrafast electron transfer, effect of the I3-/I- redox couple and mechanism of photocurrent generation. J. Phys. Chem. C 2008, 112, 9530-9537.

70

Li, L.; Gibson, E. A.; Qin, P.; Boschloo, G.; Gorlov, M.; Hagfeldt, A.; Sun, L. C. Double-layered NiO photocathodes for p-type DSSCs with record IPCE. Adv. Mater. 2010, 22, 1759-1762.

71

Carlson, B.; Leschkies, K.; Aydil, E. S.; Zhu, X. Y. Valence band alignment at cadmium selenide quantum dot and zinc oxide (1010) interfaces. J. Phys. Chem. C 2008, 112, 8419- 8423.

72

Meulenberg, R. W.; Lee, J. R.; Wolcott, A.; Zhang, J. Z.; Terminello, L. J.; Van Buuren, T. Determination of the exciton binding energy in CdSe quantum dots. ACS Nano 2009, 3, 325-330.

73

Santra, P. K.; Kamat, P. V. Tandem-Layered Quantum Dot Solar Cells: Tuning the photovoltaic response with luminescent ternary cadmium chalcogenides. J. Am. Chem. Soc. 2013, 135, 877-885.

74

Zheng, K. B.; Zídek, K.; Abdellah, M.; Torbjörnsson, M.; Chábera, P.; Shao, S. Y.; Zhang, F. L.; Pullerits, T. Fast monolayer adsorption and slow energy transfer in CdSe quantum dot sensitized ZnO nanowires. J. Phys. Chem. A 2012, 117, 5919-5925.

75

Choi, S.; Jin, H.; Bang, J.; Kim, S. Layer-by-layer quantum dot assemblies for the enhanced energy transfers and their applications toward efficient solar cells. J. Phys. Chem. Lett. 2012, 3, 3442-3447.

76

Choi, J. J.; Luria, J.; Hyun, B. R.; Bartnik, A. C.; Sun, L.; Lim, Y. F.; Marohn, J. A.; Wise, F. W.; Hanrath, T. Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. Nano Lett. 2010, 10, 1805-1811.

77

Rinnerbauer, V.; Egelhaaf, H. J.; Hingerl, K.; Zimmer, P.; Werner, S.; Warming, T.; Hoffmann, A.; Kovalenko, M.; Heiss, W.; Hesser, G. et al. Energy transfer in close-packed PbS nanocrystal films. Phys. Rev. B 2008, 77, 085322.

78

Hodes, G. Comparison of dye-and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. J. Phys. Chem. C 2008, 112, 17778-17787.

79

Achermann, M.; Petruska, M. A.; Crooker, S. A.; Klimov, V. I. Picosecond energy transfer in quantum dot langmuir- blodgett nanoassemblies. J. Phys. Chem. B 2003, 107, 13782- 13787.

80

Hosoki, K.; Tayagaki, T.; Yamamoto, S.; Matsuda, K.; Kanemitsu, Y. Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films. Phys. Rev. Lett. 2008, 100, 207404.

81

Lunz, M.; Bradley, A. L.; Gerard, V. A.; Byrne, S. J.; Gun'ko, Y. K.; Lesnyak, V.; Gaponik, N. Concentration dependence of förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: Effect of donor-donor interactions. Phys. Rev. B 2011, 83, 115423.

82

Lee, J.; Govorov, A. O.; Kotov, N. A. Bioconjugated superstructures of CdTe nanowires and nanoparticles: Multistep cascade Förster resonance energy transfer and energy channeling. Nano Lett. 2005, 5, 2063-2069.

83

Pullerits, T.; Freiberg, A. Kinetic model of primary energy transfer and trapping in photosynthetic membranes. Biophys. J. 1992, 63, 879-896.

84

Beenken, W. J. D.; Pullerits, T. Excitonic coupling in polythiophenes: Comparison of different calculation methods. J. Chem. Phys. 2004, 120, 2490-2495.

85

Zheng, K. B.; Žídek, K.; Abdellah, M.; Zhu, N.; Chábera, P.; Lenngren, N.; Chi, Q.; Pullerits, T. Directed energy transfer in films of CdSe quantum dots: Beyond the point dipole approximation. J. Am. Chem. Soc. 2014, 136, 6259-6268.

86

Nozik, A. J. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 2001, 52, 193-231.

87

Schaller, R. D.; Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601.

88

Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 2005, 5, 865-871.

89

Schaller, R. D.; Petruska, M. A.; Klimov, V. I. Effect of electronic structure on carrier multiplication efficiency: Comparative study of PbSe and CdSe nanocrystals. Appl. Phys. Lett. 2005, 87, 253102.

90

Murphy, J. E.; Beard, M. C.; Norman, A. G.; Ahrenkiel, S. P.; Johnson, J. C.; Yu, P.; Micic, O.; Ellingson, R.; Nozik, A. J. PbTe Colloidal Nanocrystals: Synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 2006, 128, 3241-3247.

91

Beard, M. C.; Knutsen, K. P.; Yu, P.; Luther, J. M.; Song, Q.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. J. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 2007, 7, 2506-2512.

92

Nair, G.; Bawendi, M. G. Carrier multiplication yields of CdSe and CdTe nanocrystals by transient photoluminescence spectroscopy. Phys. Rev. B 2007, 76, 081304.

93

Stubbs, S. K.; Hardman, S. J. O.; Graham, D. M.; Spencer, B. F.; Flavell, W. R.; Glarvey, P.; Masala, O.; Pickett, N. L.; Binks, D. J. Efficient carrier multiplication in InP nanoparticles. Phys. Rev. B 2010, 81, 081303.

94

Gabor, N. M.; Zhong, Z.; Bosnick, K.; Park, J.; McEuen, P. L. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science 2009, 325, 1367-1371.

95

Chan, W. L.; Ligges, M.; Jailaubekov, A. Kaake, L.; Miaja- Avila, L.; Zhu, X. Y. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science 2011, 1541-1545.

96

Stolle, C. J.; Schaller, R. D.; Korgel, B. A. Efficient carrier multiplication in colloidal CuInSe2 nanocrystals. J. Phys. Chem. Lett. 2014, 5, 3169-3174.

97

Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 2010, 110, 6873-6890.

98

Nair, G.; Chang, L. Y.; Geyer, S. M.; Bawendi, M. G. Perspective on the prospects of a carrier multiplication nanocrystal solar cell. Nano Lett. 2011, 11, 2145-2151.

99

Kramer, I. J.; Sargent, E. H. Colloidal quantum dot photovoltaics: A path forward. ACS Nano 2011, 5, 8506-8514.

100

Mlinar, V. Engineered nanomaterials for solar energy conversion. Nanotechnology 2013, 24, 042001.

101

Delerue, C.; Allan, G.; Pijpers, J. J. H.; Bonn, M. Carrier multiplication in bulk and nanocrystalline semiconductors: Mechanism, efficiency, and interest for solar cells. Phys. Rev. B 2010, 81, 125306.

102

Gachet, D.; Avidan, A.; Pinkas, I.; Oron, D. An upper bound to carrier multiplication efficiency in type Ⅱ colloidal quantum dots. Nano Lett. 2010, 10, 164-170.

103

Alharbi, F. H. Carrier multiplication applicability for photovoltaics; a critical analysis. J. Phys. D. Appl. Phys. 2013, 46, 125102.

104

Karki, K. J.; Ma, F.; Zheng, K. B.; Zidek, K.; Mousa, A.; Abdellah, M. A.; Messing, M. E.; Wallenberg, L. R.; Yartsev, A.; Pullerits, T. Multiple exciton generation in nano-crystals revisited: Consistent calculation of the yield based on pump-proble spectroscopy. Sci. Rep. 2013, 3, 2287.

105

Lenngren, N.; Garting, T.; Zheng, K. B.; Abdellah, M.; Lascoux, N.; Ma, F.; Yartsev, A.; Žídek, K.; Pullerits, T. Multiexciton absorption cross sections of CdSe quantum dots determined by ultrafast spectroscopy. J. Phys. Chem. Lett. 2013, 4, 3330-3336.

106

Brüggemann, B.; Herek, J. L.; Sundström, V.; Pullerits, T.; May, V. Microscopic theory of exciton annihilation: Application to the LH2 antenna system. J. Phys. Chem. B 2001, 105, 11391-11394.

107

Karki, K.; Namboodiri, M.; Khan, T. Z.; Materny, A. Pump-probe scanning near field optical microscopy: Sub- wavelength resolution chemical imaging and ultrafast local dynamics. Appl. Phys. Lett. 2012, 100, 153103.

108

Baer, R.; Rabani, E. Communication: Biexciton generation rates in CdSe nanorods are length independent. J. Chem. Phys. 2013, 138, 051102.

109

Židek, K.; Zheng, K. B.; Abdellah, M.; Lenngren, N.; Chábera, P.; Pullerits, T. Ultrafast Dynamics of Multiple Exciton Harvesting in the CdSe-ZnO System: Electron injection versus auger recombination. Nano Lett. 2012, 12, 6393-6399.

110

Sambur, J. B.; Novet, T.; Parkinson, B. A. Multiple exciton collection in a sensitized photovoltaic system. Science 2010, 330, 63-66.

111

Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H. Y.; Gao, J.; Nozik, A. J.; Beard, M. C. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 2011, 334, 1530-1534.

112

Eshet, H.; Baer, R.; Neuhauser, D.; Rabani, E. Multiexciton generation in seeded nanorods. J. Phys. Chem. Lett. 2014, 5, 2580-2585.

113

Karki, K. J.; Widom, J. R.; Seibt, J.; Moody, I.; Lonegren, M. C.; Pullerits, T.; Marcus, A. H. Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell. Nat. Commun. 2014, 5, 5869.

114

Beard, M. C.; Luther, J. M.; Nozik, A. J. The promise and challenge of nanostructured solar cells. Nat. Nanotechnol. 2014, 9, 951-954.

Nano Research
Pages 2125-2142
Cite this article:
Zheng K, Karki K, Žídek K, et al. Ultrafast photoinduced dynamics in quantum dot-based systems for light harvesting. Nano Research, 2015, 8(7): 2125-2142. https://doi.org/10.1007/s12274-015-0751-9

759

Views

26

Crossref

N/A

Web of Science

26

Scopus

0

CSCD

Altmetrics

Received: 17 December 2014
Revised: 16 February 2015
Accepted: 17 February 2015
Published: 07 May 2015
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015
Return