AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Influence of external electric field on piezotronic effect in ZnO nanowires

Fei Xue1Limin Zhang1Xiaolong Feng1Guofeng Hu1Feng Ru Fan1Xiaonan Wen2Li Zheng2Zhong Lin Wang1,2( )
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
School of Material Science and EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA
Show Author Information

Graphical Abstract

Abstract

In this work, the piezotronic effect is investigated for the first time in external electric fields ranging from 0 V·cm–1 to 2, 000 V·cm–1 by using n-type ZnO nanowires supported by a flexible substrate. In the presence of an external electric field, the Schottky barrier height (SBH) is lowered by the image force, allowing more free carriers to pass through the metal-semiconductor junction and enhancing the screening effect on positive piezoelectric polarization charges. As the strength of the external electric field increases, the piezotronic effect is significantly suppressed and the metal-semiconductor contact finally exhibits Ohmic behavior. The experimental results show that devices can be classified into three groups, corresponding to low, moderate, and high carrier densities of the nanowires used. This work not only helps us to explicate the basic physical mechanism of the piezotronic effect in a harsh environment in an electric field but also provides guidelines for future design and fabrication of piezotronic devices.

Electronic Supplementary Material

Download File(s)
12274_2015_749_MOESM1_ESM.pdf (925.6 KB)

References

1

Wang, Z. L. Nanopiezotronics. Adv. Mater. 2007, 19, 889–892.

2

Wang, Z. L. The new field of nanopiezotronics. Mater. Today 2007, 10, 20–28.

3

Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035–3040.

4

Yang, Y.; Qi, J. J.; Gu, Y. S.; Wang, X. Q.; Zhang, Y. Piezotronic strain sensor based on single bridged ZnO wires. Phys. Status Solidi RRL 2009, 3, 269–271.

5

Wang, X. D.; Zhou, J.; Song, J. H.; Liu, J.; Xu, N. S.; Wang, Z. L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 2006, 6, 2768–2772.

6

Wu, W. Z.; Wen, X. N.; Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013, 340, 952–957.

7

Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752–758.

8

Wen, X. N.; Wu, W. Z.; Wang, Z. L. Effective piezo- phototronic enhancement of solar cell performance by tuning material properties. Nano Energy 2013, 6, 1093–1100.

9

Zhang, Z.; Liao, Q. L.; Yu, Y. H.; Wang, X. D.; Zhang, Y. Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy 2014, 9, 237–244.

10

Xue, F.; Zhang, L. M.; Tang, W.; Zhang, C.; Du, W. M.; Wang, Z. L. Piezotronic effect on ZnO nanowire film based temperature sensor. ACS Appl. Mater. Interfaces 2014, 6, 5955–5961.

11

Zhang, Y.; Liu, Y.; Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 2011, 23, 3004–3013.

12

Hu, Y. F.; Klein, B. D. B.; Su, Y. J.; Niu, S. M.; Liu, Y.; Wang, Z. L. Temperature dependence of the piezotronic effect in ZnO nanowires. Nano Lett. 2013, 13, 5026–5032.

13

Yang, S. Z.; Wang, L. F.; Tian, X. Z.; Xu, Z.; Wang, W. L.; Bai, X. D.; Wang, E. G. The piezotronic effect of zinc oxide nanowires studied by in situ TEM. Adv. Mater. 2012, 24, 4676–4682.

14

Shi, J.; Starr, M. B.; Wang, X. D. Band structure engineering at heterojunction interfaces via the piezotronic effect. Adv. Mater. 2012, 24, 4683–4691.

15

Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.

16

Xu, S. G.; Guo, W. H.; Du, S. W.; Loy, M. M. T.; Wang, N. Piezotronic effects on the optical properties of ZnO nanowires. Nano Lett. 2012, 12, 5802–5807.

17

Geng, C. Y.; Jiang, Y.; Yao, Y.; Meng, X. M.; Zapien, J. A.; Lee, C. S.; Lifshitz, Y.; Lee, S. T. Well-aligned ZnO nanowire arrays fabricated on silicon substrates. Adv. Funct. Mater. 2004, 14, 589–594.

18

Yang, P. D.; Yan, H. Q.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Pham, J.; He, R. R.; Choi, H. J. Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 2002, 12, 323–331.

19

Sze, S. M. Physics of Semiconductor Devices, 2nd ed.; Wiley: New York, 1981.

20

Zhang, Y.; Hu, Y. F.; Xiang, S.; Wang, Z. L. Effects of piezopotential spatial distribution on local contact dictated transport property of ZnO micro/nanowires. Appl. Phys. Lett. 2010, 97, 033509.

21

Liu, Y.; Zhang, Z. Y.; Hu, Y. F.; Jin, C. H.; Peng, L. M. Quantitative fitting of nonlinear current–voltage curves and parameter retrieval of semiconducting nanowire, nanotube and nanoribbon devices. J. Nanosci. Nanotechnol. 2008, 8, 252–258.

22

Zhang, Z. Y.; Yao, K.; Liu, Y.; Jin, C. H.; Liang, X. L.; Chen, Q.; Peng, L. M. Quantitative analysis of current–voltage characteristics of semiconducting nanowires: Decoupling of contact effects. Adv. Funct. Mater. 2007, 17, 2478–2489.

Nano Research
Pages 2390-2399
Cite this article:
Xue F, Zhang L, Feng X, et al. Influence of external electric field on piezotronic effect in ZnO nanowires. Nano Research, 2015, 8(7): 2390-2399. https://doi.org/10.1007/s12274-015-0749-3

514

Views

32

Crossref

N/A

Web of Science

36

Scopus

6

CSCD

Altmetrics

Received: 16 November 2014
Revised: 03 February 2015
Accepted: 16 February 2015
Published: 24 April 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return