Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We report lanthanide-based micelles integrating hypericin (Hyp) for X-ray-triggered photodynamic therapy (PDT). The lanthanide luminescence induced by X-ray irradiation excites the photosensitizer, which leads to the generation of singlet oxygen. This versatile approach can be extended to other photosensitizers or other types of liponanoparticles and can allow for magnetic resonance imaging (MRI) guidance.
Setua, S.; Menon, D.; Asok, A.; Nair S.; Koyakutty, M. Folate receptor targeted, rare-earth oxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells. Biomaterials 2010, 31, 714–729.
Bünzli, J. C. G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077.
Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.
Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.
Delehanty, J. B.; Bradburne, C. E.; Susumu, K.; Boeneman, K.; Mei, B. C.; Farrell, D.; Blanco-Canosa, J. B.; Dawson, P. E.; Mattoussi, H.; Medintz, I. L. Spatiotemporal multicolor labeling of individual cells using peptide-functionalized quantum dots and mixed delivery techniques. J. Am. Chem. Soc. 2011, 133, 10482–10489.
Pinaud, F.; Clarke, S.; Sittner, A.; Dahan, M. Probing cellular events, one quantum dot at a time. Nat. Methods 2010, 7, 275–285.
Faulkner, S.; Pope, S. J. A.; Burton-Pye, B. P. Lanthanide complexes for luminescence imaging applications. Appl. Spectrosc. Rev. 2005, 40, 1–31.
LaVan, D. A.; McGuire, T.; Langer, R. Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 2003, 21, 1184– 1191.
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Delivery Rev. 2002, 54, 631–651.
Xie, J.; Lee, S.; Chen, X. Y. Nanoparticle-based theranostic agents. Adv. Drug Delivery Rev. 2010, 62, 1064–1079.
Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Gadolinium (Ⅲ) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev. 1999, 99, 2293– 2352.
Zhou, Z. X.; Lu, Z. R. Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip. Rev. : Nanomed. Nanobiotechnol. 2013, 5, 1–18.
Merbach, A. S.; Helm, L. Toth, E. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; John Wiley & Sons, Ltd: Chichester, West Sussex, UK, 2013.
Maguire, J. A.; Zhu, Y. Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment; World Scientific Pub. Co. : Hackensack, NJ, 2012.
Eliseeva, S. V.; Bünzli, J. C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189–227.
Werts, M. H. V. Making sense of lanthanide luminescence. Sci. Prog. 2005, 88, 101–131.
Urbain, G. La phosphorescence cathodique des terres rares. Ann. Chim. Phys. 1909, 8, 222–375.
Kaščáková, S.; Giuliani, A.; Jamme, F.; Refregiers, M. Photodynamic Therapy. In Radiation Damage in Biomolecular Systems; Springer: Dordrecht, Heidelberg, London, New York, 2012; pp 445–460.
Roelants, M.; Lackner, B.; Waser, M.; Falk, H.; Agostinis, P.; Van Poppel, H.; de Witte, P. A. M. In vitro study of the phototoxicity of bathochromically-shifted hypericin derivatives. Photochem. Photobiol. Sci. 2009, 8, 822–829.
Carpenter, S.; Fehr, M. J.; Kraus, G. A.; Petrich, J. W. Chemiluminescent activation of the antiviral activity of hypericin: A molecular flashlight. Proc. Natl. Acad. Sci. USA 1994, 91, 12273–12277.
Wen, J.; Chowdhury, P.; Wills, N. J.; Wannemuehler, Y.; Park, J.; Kesavan, S.; Carpenter, S.; Kraus, G. A.; Petrich, J. W. Toward the molecular flashlight: Preparation, properties and photophysics of a hypericin-luciferin tethered molecule. Photochem. Photobiol. 2002, 76, 153–157.
Theodossiou, T.; Hothersall, J. S.; Woods, E. A.; Okkenhaug, K.; Jacobson, J.; MacRobert, A. J. Firefly luciferin-activated rose bengal: In vitro photodynamic therapy by intracellular chemiluminescence in transgenic NIH 3T3 cells. Cancer Res. 2003, 63, 1818–1821.
Wang, F.; Zhang, Y.; Fan, X. P.; Wang, M. Q. Facile synthesis of water-soluble LaF3: Ln3+ nanocrystals. J. Mater. Chem. 2006, 16, 1031–1034.
Liu, Y. F.; Chen, W.; Wang, S. P.; Joly, A. G.; Westcott, S.; Woo, B. K. X-ray luminescence of LaF3: Tb3+ and LaF3: Ce3+, Tb3+ water-soluble nanoparticles. J. Appl. Phys. 2008, 103, 063105.
Liu, Y. F.; Chen, W.; Wang, S. P.; Joly, A. G. Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation. Appl. Phys. Lett. 2008, 92, 043901.
Bulin, A. L.; Truillet, C.; Chouikrat, R.; Lux, F.; Frochot, C.; Amans, D.; Ledoux, G.; Tillement, O.; Perriat, P.; Barberi- Heyob, M. et. al. X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyins. J. Phys. Chem. C 2013, 117, 21583–21589.
Ma, L.; Zou, X.; Chen, W. A new X-ray activated nanoparticle photosensitizer for cancer treatment. J. Biomed. Nanotechnol. 2014, 10, 1501–1508.
Ma, L.; Zou, X. J.; Bui, B.; Chen, W.; Song, K. H.; Solberg, T. X-ray excited ZnS: Cu, Co afterglow nanoparticles for photodynamic activation. Appl. Phys. Lett. 2014, 105, 013702.
Bonnet, C. S.; Pellegatti, L.; Buron, F.; Shade, C. M.; Villette, S.; Kubíček, V.; Guillaumet, G.; Suzenet, F.; Petoud, S.; Tóth, É. Hydrophobic chromophore cargo in micellar structures: A different strategy to sensitize lanthanide cations. Chem. Commun. 2010, 46, 124–126.
Bonnet, C. S.; Buron, F.; Caillé, F., Shade, C. M.; Drahoš, B.; Pellegatti, L.; Zhang, J.; Villette, S.; Helm, L.; Pichon, C. et. al. Pyridine-based lanthanide complexes combining MRI and NIR luminescence activities. Chem. —Eur. J. 2012, 18, 1419–1431.
Chrysochoos, J. Fluorescence enhancement of Eu3+ by Tb3+ in dimethylsulfoxide (DMSO). J. Lumin. 1974, 9, 79–93.
Jiao, H.; Zhang, N.; Jing, X. P.; Jiao, D. M. Influence of rare earth elements (Sc, La Gd and Lu) on the luminescent properties of green phosphor Y2SiO5: Ce, Tb. Opt. Mater. (Amst). 2007, 29, 1023–1028.
Armelao, L.; Heigl, F.; Jürgensen, A.; Blyth, R. I. R.; Regier, T.; Zhou, X. T.; Sham, T. K. X-ray excited optical luminescence studies of ZnO and Eu-doped ZnO nanostructures. J. Phys. Chem. C 2007, 111, 10194–10200.
Kascakova, S.; Refregiers, M.; Jancura, D.; Sureau, F.; Maurizot, J. C.; Miskovsky, P. High level of low-density lipoprotein receptors enhance hypericin uptake by U-87 MG cells in the presence of LDL. Photochem. Photobiol. 2005, 81, 1395–1403.
Giuliani, A.; Jamme, F.; Rouam, V.; Wien, F.; Giorgetta, J. L.; Lagarde, B.; Chubar, O.; Bac, S.; Yao, I.; Rey, S. et al. DISCO: A low-energy multipurpose beamline at synchrotron SOLEIL. J. Synchrotron Radiat. 2009, 16, 835–841.
Jamme, F.; Villette, S.; Giuliani, A.; Rouam, V.; Wien, F.; Lagarde, B.; Réfrégiers, M. Synchrotron UV fluorescence microscopy uncovers new probes in cells and tissues. Microsc. Microanal. 2010, 16, 507–514.
Edelstein, A.; Amodaj, N.; Hoover, K.; Vale, R.; Stuurman, N. Computer control of microscopes using micromanager. Curr. Protoc. Mol. Biol. 2010, 92, 14.20.1–14.20.17.