Journal Home > Volume 8 , Issue 7

Diatoms are unicellular algae enclosed in intricate bio-silicified walls with repetitive nanostructures in a size range which makes them potentially relevant for a broad spectrum of industrial applications. How to optimize the nano-scale structures of the frustule for utilization of diatoms in nanotechnology is one of the technological challenges for these applications. Light is one of the most important abiotic factors for algal photosynthetic growth, and the frustule may play an important role in mediating light for these biological functions, as well as being central for its nano-technological applications. In this study, we tested the influence of light quality on the nanostructure of the frustule of Coscinodiscus granii and compared this to growth rate response. The results showed that colored light (red, yellow, green and blue) at 300 μmol photons m-2·s-1 resulted in a statistically significant change in nanostructure compared to white light. Green light at 100 μmol photon m-2·s-1 led to a significant decrease in mean frustule diameter and mean foramen diameter. Numerical simulations confirmed that the morphological changes obtained were sufficient to induce clear differences in the photonics properties of the frustule. The wavelength had no effect on the growth rate at high light intensity (300 μmol photons m-2·s-1). However, at 100 μmol photons m-2·s-1, yellow, red-orange and green light resulted in significantly lower maximum growth rates than the other wavelengths. This response of the frustule structure to different light treatment indicates the possibility of a light-based frustule nanostructure manipulation method, which is simple and environmentally friendly.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Implications for photonic applications of diatom growth and frustule nanostructure changes in response to different light wavelengths

Show Author's information Yanyan Su1( )Nina Lundholm2Søren M. M. Friis3Marianne Ellegaard1
Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 401871Frederiksberg, Denmark
Natural History Museum of DenmarkUniversity of Copenhagen, Sølvgade 83S, DK-1307, Copenhagen KDenmark
Department of Photonics EngineeringTechnical University of Denmark, Ørsteds Plads 3432800Kongens Lyngby, Denmark

Abstract

Diatoms are unicellular algae enclosed in intricate bio-silicified walls with repetitive nanostructures in a size range which makes them potentially relevant for a broad spectrum of industrial applications. How to optimize the nano-scale structures of the frustule for utilization of diatoms in nanotechnology is one of the technological challenges for these applications. Light is one of the most important abiotic factors for algal photosynthetic growth, and the frustule may play an important role in mediating light for these biological functions, as well as being central for its nano-technological applications. In this study, we tested the influence of light quality on the nanostructure of the frustule of Coscinodiscus granii and compared this to growth rate response. The results showed that colored light (red, yellow, green and blue) at 300 μmol photons m-2·s-1 resulted in a statistically significant change in nanostructure compared to white light. Green light at 100 μmol photon m-2·s-1 led to a significant decrease in mean frustule diameter and mean foramen diameter. Numerical simulations confirmed that the morphological changes obtained were sufficient to induce clear differences in the photonics properties of the frustule. The wavelength had no effect on the growth rate at high light intensity (300 μmol photons m-2·s-1). However, at 100 μmol photons m-2·s-1, yellow, red-orange and green light resulted in significantly lower maximum growth rates than the other wavelengths. This response of the frustule structure to different light treatment indicates the possibility of a light-based frustule nanostructure manipulation method, which is simple and environmentally friendly.

Keywords: coscinodiscus granii, light wavelength, light intensity, frustule nanostructure, growth rate, photonic properties

References(47)

1

Nelson, D. M.; Tréguer, P.; Brzezinski, M. A.; Leynaert, A.; Quéguiner, B. Production and dissolution of biogenic silica in ocean-revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global. Biogeochem. Cycles. 1995, 9, 359–372.

2

Li, H. Y.; Lu, Y.; Zheng, J. W.; Yang, W. D.; Liu, J. S. Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis. Mar. Drugs. 2014, 12, 153–166.

3

Guiry, M. D. How many species of algae are there? J. Phycol. 2012, 48, 1057–1063.

4

Martin-Jezequel, V.; Hildebrand, M.; Brzezinski, M. A. Silicon metabolism in diatoms: Implications for growth. J. Phycol. 2000, 36, 821–840.

5
Kröger, N.; Sumper, M. The molecular basis of diatom biosilicaformation. Biomineralization: Progress in biology, molecular biology and application; Bäuerlein, E., 2nd Eds.; SBN: 978-3-527-60461-6, 135–158.
6

Round, E. F.; Crawford, M. R.; Mann, G. D. The diatoms: Biology & morphology of the genera; Cambridge University Press: New York, 1990.

7

Kröger, N.; Poulsen, N. Diatoms-from cell wall biogenesis to nanotechnology. Annu. Rev. Genet. 2008, 42, 83–107.

8

Lettieri, S.; Setaro, A.; De Stefano, L.; De Stefano, M.; Maddalena, P. The gas-detection properties of light-emitting diatoms. Adv. Funct. Mater. 2008, 18, 1257–1264.

9

De Stefano, L.; De Stefano, M.; Maddalena, P.; Moretti, L.; Rea, I.; Mocella, V.; Rendina, I. Playing with light in diatoms: Small water organisms with anatural photonic crystal structure. Proc. SPIE 2007, 6593, 659313.

10

De Stefano, L.; Rea, I.; Rendina, I.; De Stefano, M.; Moretti, L. Lenslesslight focusing with the centric marine diatom Coscinodiscus walesii. Opt. Express 2007, 15, 18082–18088.

11

Oh, S. J.; Kim, D. I.; Sajima, T.; Shimasaki, Y.; Matsuyama, Y.; Oshima, Y.; Honjo, T.; Yang, H. S. Effects of irradiance of various wavelengths from light-emitting diodes on the growth of the harmful dinoflagellate Heterocapsacircularisquama and the diatom Skeletonema costatum. Fisheries Sci. 2008, 74, 137–145.

12

Kieu, K.; Li, C.; Fang, Y.; Cohoon, G.; Herrera, O. D.; Hildebrand, M.; Sandhage, K. H.; Norwood, R. A. Structure- based optical filtering by the silica microshell of the centric marine diatom Coscinodiscus wailesii. Opt. Express 2014, 22, 15992–15999.

13

Ferrara, M. A.; Dardano, P.; De Stefano, L.; Rea, I.; Coppola, G.; Rendina, I.; Congestri, R.; Antonucci, A.; De Stefano, M.; De Tommasi, E. Optical properties of diatom nanostructured biosilica in Arachnoidiscus sp: Micro-optics from mother nature. PloS One 2014, 9, e103750.

14

De Stefano, L.; Maddalena, P.; Moretti, L.; Rea, I.; Rendina, I.; De Tommasi, E.; Mocella, V.; De Stefano, M. Nano- biosilica from marine diatoms: Abrand new material for photonic applications. Superlattices Microstruct 2009, 46, 84–89.

15

Qin, T.; Gutu, T.; Jiao, J.; Chang, C. H.; Rorrer, G. L. Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom Nitzschia Frustulum. ACS Nano 2008, 2, 1296–1304.

16

Zhang, D. Y.; Wang, Y.; Cai, J.; Pan, J. F.; Jiang, X. G.; Jiang, Y. G. Bio-manufacturing technology based on diatom micro- and nanostructure. Chin. Sci. Bull. 2012, 57, 3836– 3849.

17

Losic, D.; Triani, G.; Evans, P. J.; Atanacio, A.; Mitchell, J. G.; Voelcker, N. H. Controlled pore structure modification of diatoms by atomic layer deposition of TiO2. J. Mater. Chem. 2006, 16, 4029–4034.

18

Townley, H. E.; Woon, K. L.; Payne, F. P.; White-Cooper, H.; Parker, A. R. Modification of the physical and optical properties of the frustule of the Diatom Coscinodiscus wailesii by nickel sulfate. Nanotechnol. 2007, 18, 295101.

19

Jeffryes, C.; Gutu, T.; Jiao, J.; Rorrer, G. L. Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp by atwo-stage bioreactor cultivation process. ACS Nano 2008, 2, 2103–2112.

20

Hansen, L. R.; Soylu, S. I.; Kotaki, Y.; Moestrup, O.; Lundholm, N. Toxin production and temperature-induced morphological variation of the diatom Pseudo-nitzschiaseriata from the arctic. Harmful Algae. 2011, 10, 689–696.

21

Lewis, N. I.; Bates, S. S.; McLachlan, J. L.; Smith, J. C. Temperature effects on growth, domoicacid production, and morphology of the diatom nitzschiapungens f. multiseries; Smayda, T.J., Shimizu, Y., Eds.; Amsterdam: Elsevier, 1993, 3, 601–606.

22

De Stefano, M.; De Stefano, L.; Congestri, R. Functional morphology of micro and nanostructures in two distinct diatom frustules. Superlattices Microstruct. 2009, 46, 64–68.

23

Parker, A. R.; Townley, H. E. Biomimetics of photonic nanostructures. Nat. Nanotechnol. 2007, 2, 347–353.

24

Sumper, M.; Brunner, E. Learning from diatoms: Nature's tools for the production of nanostructured silica. Adv. Funct. Mater. 2006, 16, 17–26.

25

Mouget, J. L.; Rosa, P.; Tremblin, G. Acclimation of Hasleaostrearia to light of different spectral qualities-confirmation of "chromatic adaptation" in diatoms. J. Photochem. Photobiol., B 2004, 75, 1–11.

26

Mercado, J. M.; Sánchez-Saavedra, M. D.; Correa-Reyes, G.; Lubián, L.; Montero, O.; Figueroa, F. L. Blue light effect on growth, light absorption characteristics and photosynthesis of five benthic diatom strains. Aquat Bot. 2004, 78, 265–277.

27

Glover, H. E.; Keller, M. D.; Spinrad, R. W. The effects of light quality and intensity on photosynthesis and growth of marine eukaryotic and prokaryotic phytoplankton clones. J. Exp. Mar. Biol. Ecol. 1987, 105, 137–159.

28

Wallen, D. G.; Geen, G. H. Light quality in relation to growth, photosynthetic rates and carbon metabolism in 2 speices of marine plankton algae. Mar. Biol. 1971, 10, 34–43.

29

Wallen, D. G.; Geen, G. H. Light quality and concentration of proteins, RNA, DNA and photo synthetic pigments in 2 species of marine plankton algae. Mar. Biol. 1971, 10, 44–51.

30

Keeling, P.J. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol. 2013, 64, 583–607.

31

Olle, M.; Viršile, A. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agric. Food Sci. 2013, 22, 223–234.

32

Schulze, P. S. C.; Barreira, L. A.; Pereira, H. G. C.; Perales, J. A.; Varela, J. C. S. Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol. 2014, 32, 423–431.

33

Blanken, W.; Cuaresma, M.; Wijffels, R. H.; Janssen, M. Cultivation of microalgae on artificial light comes at acost. Algal Res. 2013, 2, 333–340.

34

Taylor, N. J. Silica incorporation in the diatom Coscinodiscus granii as affected by light intensity. Brit. Phycol. J. 1985, 20, 365–374.

35
Tomas, C. Identifying Marine Phytoplankton; Academic Press: 1997.
36

Jung, S. W.; Youn, S. J.; Shin, H. H.; Yun, S. M.; Ki, J. S.; Lee, J. H. Effect of temperature on changes in size and morphology of the marine diatom, Ditylumbrightwellii (west) grunow (Bacillariophyceae). Estuarine, Coastal Shelf Sci. 2013, 135, 128–136.

37

Falasco, E.; Bona, F.; Badino, G.; Hoffmann, L.; Ector, L. Diatom teratologicalforms and environmental alterations: A review. Hydrobiologia. 2009, 623, 1–35.

38

Villareal, T. A.; Fryxell, G. A. Temperature effects on the valve structure of the bipolar diatoms Thalassiosira antarctica and Porosiraglacialis. Polar Biol. 1983, 2, 163– 169.

39

Hervé, V.; Derr, J.; Douady, S.; Quinet, M.; Moisan, L.; Lopez, P. J. Multiparametricanalyses reveal the pH-dependence of silicon biomineralization in diatoms. Plos One 2012, 7, 1–12.

40

Leterme, S. C.; Ellis, A. V.; Mitchell, J. G.; Buscot, M. J.; Pollet, T.; Schapira, M.; Seuront, L. Morphological flexibility of Cocconeisplacentula (Bacillariophyceae) nanostructure to changing salinity levels. J. Phycol. 2010, 46, 715–719.

41

Cattaneo, A.; Couillard, Y.; Wunsam, S.; Courcelles, M. Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). J. Paleolimnol. 2004, 32, 163–175.

42

De Tommasi, E.; Rea, I.; Mocella, V.; Moretti, L.; De Stefano, M.; Rendina, I.; De Stefano, L. Multi-wavelength study of light transmitted through asingle marine centric diatom. Opt. Express 2010, 18, 12203–12212.

43

Noyes, J.; Sumper, M.; Vukusic, P. Light manipulation in amarine diatom. J. Mater. Res. 2008, 23, 3229–3235.

44

Guillard, R. R. L.; Hargraves, P. E. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia. 1993, 32, 234– 236.

45
Christensen, T. Alger i naturen og i laboratoriet; Københavns Universitet/ Institut for Sporeplanter: 1988.
46

Hasle, G. R.; Fryxell, G. A. Diatom: Cleaning and mounting for light and electron microscopy. Trans. Am. Microsc. Soc. 1970, 89, 469–474.

47

Delen, N.; Hooker, B. Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: A fast fourier transform approach. JOSA A 1998, 15, 857– 867.

File
12274_2015_746_MOESM1_ESM.pdf (519.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 December 2014
Revised: 02 February 2015
Accepted: 10 February 2015
Published: 22 April 2015
Issue date: July 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This study was funded by FTP project no. 12-127569 (ALgal PHotonics Applications: ALPHA).

Return