Journal Home > Volume 8 , Issue 7

Silver nanocubes enriched with 100 facets have been extensively used for surface-enhanced Raman scattering. Herein, we report a new water-phase synthesis method for well-defined Ag nanocubes with tunable sizes via a two-step procedure at room temperature. First, irregularly shaped Ag nanoparticles (INPs) were prepared by reducing silver ammonia solution using ethylal. Second, the agglomerated INPs were selectively etched with HNO3 and Cl- to yield 100 facet-rich mesoporous Ag nanocubes. The mechanism of Ag-nanocube formation and growth was investigated in detail by elucidating the involved chemical reactions and physical changes at each step during the synthesis. The addition of Cl- anions was responsible for facilitating Ag nanoparticle growth by removing surface-adsorbed AgCl+ species, thereby eliminating inter-particle repulsive forces. This agglomeration was found crucial for the subsequent selective oxidation of Ag nanoparticles because the protective agent used, polyvinylpyrrolidone (PVP), was the most effective one for adsorption on the surfaces of Ag nanoparticles of size greater than approximately 50 nm. Importantly, mesopores were found inside the Ag nanocubes; this can be attributed to the unavoidable imperfect packing during the agglomeration of INPs. The newly prepared Ag nanocubes were further used to enhance the Raman signal of rhodamine 6G, which is capable of reducing the detection limitation to 10-16 mol·L-1.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mesoporous Ag nanocubes synthesized via selectively oxidative etching at room temperature for surface-enhanced Raman spectroscopy

Show Author's information Lin Gan1Meijia Yang1Xi Ke2Guofeng Cui2( )Xudong Chen1( )Shiva Gupta3William Kellogg3Drew Higgins4Gang Wu3
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education of ChinaSun Yat-sen UniversityGuangzhou510275China
Electronic Packaging Electrochemistry LaboratorySchool of Chemistry and Chemical EngineeringSun Yat-sen UniversityGuangzhou510275China
Department of Chemical and Biological EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNew York14260USA
Department of Chemical EngineeringUniversity of Waterloo, Waterloo, Ontario, N2L 3G1Canada

Abstract

Silver nanocubes enriched with 100 facets have been extensively used for surface-enhanced Raman scattering. Herein, we report a new water-phase synthesis method for well-defined Ag nanocubes with tunable sizes via a two-step procedure at room temperature. First, irregularly shaped Ag nanoparticles (INPs) were prepared by reducing silver ammonia solution using ethylal. Second, the agglomerated INPs were selectively etched with HNO3 and Cl- to yield 100 facet-rich mesoporous Ag nanocubes. The mechanism of Ag-nanocube formation and growth was investigated in detail by elucidating the involved chemical reactions and physical changes at each step during the synthesis. The addition of Cl- anions was responsible for facilitating Ag nanoparticle growth by removing surface-adsorbed AgCl+ species, thereby eliminating inter-particle repulsive forces. This agglomeration was found crucial for the subsequent selective oxidation of Ag nanoparticles because the protective agent used, polyvinylpyrrolidone (PVP), was the most effective one for adsorption on the surfaces of Ag nanoparticles of size greater than approximately 50 nm. Importantly, mesopores were found inside the Ag nanocubes; this can be attributed to the unavoidable imperfect packing during the agglomeration of INPs. The newly prepared Ag nanocubes were further used to enhance the Raman signal of rhodamine 6G, which is capable of reducing the detection limitation to 10-16 mol·L-1.

Keywords: room temperature, surface-enhanced Raman scattering (SERS), Ag nanocube, selective etching, water phase synthesis

References(47)

1

Lee, S. Y.; Hung, L.; Lang, G. S.; Cornett, J. E.; Mayergoyz, I. D.; Rabin, O. Dispersion in the SERS enhancement with silver nanocube dimers. ACS Nano 2010, 4, 5763–5772.

2

Park, H. G.; Joo, J. H.; Kim, H. G.; Lee, J. S. Shape-dependent reversible assembly properties of polyvalent DNA-silver nanocube conjugates. J. Phys. Chem. C 2012, 116, 2278–2284.

3

Mahmoud, M. A.; Chamanzar, M.; Adibi, A.; El-Sayed, M. A. Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonances and sensitivity factors of highly symmetric systems: Silver nanocubes. J. Am. Chem. Soc. 2012, 134, 6434–6342.

4

Ahamad, N.; Bottomley, A.; Ianoul, A. Optimizing refractive index sensitivity of supported silver nanocube monolayers. J. Phys. Chem. C 2012, 116, 185–192.

5

Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. A nanocscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 2004, 108, 109–116.

6

Whitney, A. V.; Elam, J. W.; Zou, S.; Zinovev, A. V.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P. Locailized surface plasmon resonance nanosensor: A high-resolution distance- dependence study using atomic layer deposition. J. Phys. Chem. B 2005, 109, 20522–20528.

7

Jain, P. K.; Huang, W.; El-Sayed, M. A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett. 2007, 7, 2080–2088.

8

Sun, Y. G.; Xia, Y. N. Shape-controlled of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

9

Tao, A.; Sinsermsuksakul, P.; Yang, P. D. Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2007, 2, 435–440.

10

Mahmoud, M. A.; Tabor, C. E.; El-Sayed, M. A. Surface- enhanced Raman scattering enhancement by aggregated silver nanocube monolayers assembled by the Langmuir-Blodgett technique at different surface pressures. J. Phys. Chem. C 2009, 113, 5493–5501.

11

Ling, X. Y.; Yan, R.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P. Alumina-coated Ag nanocrystal monolayers as surface enhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 2014, 7, 132–143.

12

Wang, Y.; Lu, N.; Wang, W.; Liu, L.; Feng, L.; Zeng, Z.; Li, H.; Xu, W.; Wu, Z.; Hu, W.; Lu, Y.; Chi, L. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 2013, 6, 159–166.

13

Mahmoud, M. A.; El-Sayed, M. A. Comparative study of the assemblies and the resulting plasmon fields of Langmuir- Blodgett assembled monolayers of silver nanocubes and gold nanocages. J. Phys. Chem. C 2008, 112, 14618–14625.

14

Wen, X. L.; Yi, M. F.; Zhang, D. G.; Wang, P.; Lu, Y. H.; Ming, H. Tunable plasmonic coupling between silver nano- cubes and silver nano-hole arrays. Nanotechnology 2011, 22, 085203–085209.

15

Galush, W. J.; Shelby, S. A.; Mulvihill, M. J.; Tao, A.; Yang, P. D.; Groves, J. T. A nanocube plasmonic sensor for molecular binding on membrane surfaces. Nano Lett. 2009, 9, 2077–2082.

16

Wu, H. J.; Henzie, J.; Lin, W. C.; Rhodes, C.; Li, Z.; Sartorel, E.; Thorner, J.; Yang, P. D.; Groves, J. T. Membrane-protein binding measured with solution-phase plasmonic nanocube sensors. Nat. Methods 2012, 9, 1189–1191.

17

Mahmoud, M. A.; Poncheri, A. J.; Phillips, R. L.; El-Sayed, M. A. Plasmonic field enhancement of the exciton-exciton annihilation process in a poly(p-phenyleneethylene) fluorescent polymer by Ag nanocubes. J. Am. Chem. Soc. 2010, 132, 2633–2641.

18

Yi, M. F.; Zhang, D. G.; Wen, X. L.; Fu, Q.; Wang, P.; Lu, Y. H.; Ming, H. Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film. Plasmonics 2011, 6, 213–217.

19

Han, S. B.; Song, Y. J.; Lee, J. M.; Kim, J. Y.; Park, K. W. Platinum nanotube catalysts for methanol and ethanol electrooxidation. Electrochem. Commun. 2008, 10, 1044–1047.

20

Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S. H. Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 2007, 129, 6974– 6975.

21

Lee, C. L.; Tsai, Y. L.; Chen, C. W. Specific and mass activity of silver nanocube and nanoparticle-based catalysts for electroless copper deposition. Electrochim. Acta 2013, 104, 185–190.

22

Xu, R.; Wang, D. S.; Zhang, J. T.; Li, Y. D. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem. Asian J. 2006, 1, 888–893.

23

Skrabalak, S. E.; Au, L.; Li, X. D.; Xia, Y. N. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2007, 2, 2182–2190.

24

Lu, X. M.; Au, L.; McLellan, J.; Li, Z. Y.; Marquez, M.; Xia, Y. N. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett. 2007, 7, 1764–1769.

25

Ping, H. M.; Chen, Y. Z.; Guo, H. Z.; Wang, Z. W.; Zeng, D. Q.; Wang, L. S.; Peng, D. L. A facile solution approach for the preparation of Ag@Ni core-shell nanocubes. Mater. Lett. 2014, 116, 239–242.

26

Xia, Y. N.; Xia, X. H.; Wang, Y.; Xie, S. F. Shape-controlled synthesis of metal nanocrystals. MRS Bull. 2013, 38, 335– 344.

27

Zhang, Q.; Li, W. Y.; Moran, C.; Zeng, J.; Chen, J. Y.; Wen, L. P.; Xia, Y. N. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties. J. Am. Chem. Soc. 2010, 132, 11372–11378.

28

Galush, W. J.; Shelby, S. A.; Mulvihill, M. J.; Tao, A.; Yang, P.; Groves, J. T. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single- crystal, truncated cubes and tetrahedrons. Nano Lett. 2009, 9, 2077–2082.

29

Zhang, Q.; Cobley, C.; Au, L.; McKiernan, M.; Schwartz, A.; Wen, L. P.; Chen, J. Y.; Xia, Y. N. Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon. ACS Appl. Mater. Inter. 2009, 1, 2044–2048.

30

Rycenga, M.; McLellan, J. M.; Xia, Y. N. Controlling the assembly of silver nanocubes through selective functionalization of their faces. Adv. Mater. 2008, 20, 2416–2420.

31

Yu, D. B.; Yam, V. W. Controlled synthesis of monodisperse silver nanocubes in water. J. Am. Chem. Soc. 2004, 126, 13200–13201.

32

Chang, Y. M.; Lu, I. T.; Chen, C. Y.; Hsieh, Y. C.; Wu, P. W. High-yield water-based synthesis of truncated silver nanocubes. J. Alloy. Compd. 2014, 586, 507–511.

33

Leopold, N.; Lendl, B. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J. Phys. Chem. B 2003, 107, 5723–5727.

34

Mahapatra, S. K.; Bogle, K. A.; Dhole, S. D.; Bhoraskar, V. N. Synthesis of gold and silver nanoparticles by electron irradiation at 5–15 keV energy. Nanotechnology 2007, 18, 135602.

35

Maity, D.; Kanti, B. M.; Bhowmick, B.; Sarkar, J.; Saha, S.; Acharya, K.; Chakraborty, M.; Chattopadhyay, D. In situ synthesis, characterization, and antimicrobial activity of silver nanoparticles using water soluble polymer. J. Appl. Polym. Sci. 2011, 122, 2189–2196.

36

Zhang, F.; Wu, X.; Chen, Y.; Lin, H. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. Fiber. Polym. 2009, 10, 496–501.

37

Yin, Y. D.; Li, Z. Y.; Zhong, Z. Y.; Gates, B.; Xia, Y. N.; Venkateswaran, S. Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity. J. Mater. Chem. 2002, 12, 522–527.

38

Im, S. H.; Lee, Y. T.; Wiley, B.; Xia, Y. Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed. 2005, 44, 2154–2157.

39

Xia, X. H.; Zeng, J.; Zhang, Q.; Moran, C. H.; Xia, Y. N. Recent developments in shapes-controlled synthesis of silver nanocrystals. J. Phys. Chem. C 2012, 116, 21647–21656.

40

Chen, A. H.; Xie, H. X.; Wang, H. Q.; Li, H. Y.; Li, X. Y. Fabrication of Ag/polypyrrole coaxial nanocables through common ions adsorption effect. Synthetic Met. 2006, 156, 346–350.

41

Ai, L. H.; Zhang, C. H.; Jiang, J. Hierarchical porous AgCl@Ag hollow architectures: Self-templating synthesis and highly enhanced visible light photocatalytic activity. Appl. Catal. B-Environ. 2013, 142, 744–751.

42

Sing, K. S. W. D.; Everett, H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniew, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619.

43

Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. Surface- enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticles shape dependence. Anal. Chem. 2005, 77, 3261–3266.

44

Huang, Z. L.; Meng, G. W.; Huang, Q.; Chen, B.; Zhou, F.; Hu, X. Y.; Qian, Y. W.; Tang, H. B.; Han, F. M.; Chu, Z. Q. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 2014, 7, 1177–1187.

45

Qin, L. D.; Zou, S. L.; Xue, C.; Atkinson, A.; Schatz, G. C.; Mirkin, C. A. Designing, fabrication, and imaging Raman hot spots. Proc. Natl. Acad. Sci. USA 2006, 103, 13300–13303.

46

Pedano, M. L.; Li, S. Z.; Schatz, G. C.; Minkin, C. A. Periodic electric field enhancement along gold rods with nanogaps. Angew. Chem. Int. Ed. 2010, 49, 78–82.

47

Li, S. Z.; Pedano, M. L.; Chang, S. H.; Minkin, C. A.; Schatz, G. C. Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods. Nano Lett. 2010, 10, 1722–1727.

File
12274_2015_745_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 December 2014
Revised: 01 February 2015
Accepted: 10 February 2015
Published: 20 May 2015
Issue date: July 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

X. D. C is grateful to the National Natural Science Foundation of China (No. 51233008). G. F. C. gratefully acknowledges the financial support by the National Natural Science Foundation of China (Nos. 51271205 and 50801070), Guangzhou Pearl Technology the Nova Special Project (No. 2012J2200058), Excellent Young College Teachers Development Program in Guangdong Province (No. Yq2013006), Research and Application of Key Technologies Oriented the Industrial Development (Nos. 90035-3283309 and 90035-3283321), Science and Technology Plan Projects of Guangzhou city (No. 2013Y2-00102), Huizhou city (No. 2012B050013012) and DaYa Gulf district of Huizhou city (No. 20110108 and 20120212). G. W. acknowledges the financial support from the start-up funding of University at Buffalo, SUNY.

Return