AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity

Wei Hong1,2Jin Wang1,3( )Erkang Wang1,2( )
State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
University of Chinese Academy of SciencesBeijing100039China
Department of Chemistry and PhysicsState University of New York at Stony BrookNew York, NY, 11794-3400USA
Show Author Information

Graphical Abstract

Abstract

Using Te nanowires as a sacrificial template, we developed a facile wet-chemical method for the synthesis of bimetallic PtCu nanowires. The as-prepared PtCu nanowires possess a porous structure and high aspect ratio. Transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, energy dispersive X-ray spectrum elemental mapping, inductively coupled plasmamass spectroscopy, and X-ray photoelectron spectroscopy (XPS) measurement techniques are used to analyze the structure and composition of the as-prepared nanowires. The XPS results verify that the incorporation of Cu led to the modified electronic state of Pt. Electrocatalytic results prove that the as-prepared nanowires present superior activity for methanol and ethanol electrooxidation in an alkaline solution.

Electronic Supplementary Material

Download File(s)
12274_2015_741_MOESM1_ESM.pdf (1.5 MB)

References

1

Antolini, E. Palladium in fuel cell catalysis. Energy Environ. Sci. 2009, 2, 915–931.

2

Tiwari, J. N.; Tiwari, R. N.; Singh, G.; Kim, K. S. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2013, 2, 553–578.

3

Singh, R. N.; Awasthi, R. Graphene support for enhanced electrocatalytic activity of Pd for alcohol oxidation. Catal. Sci. Technol. 2011, 1, 778–783.

4

Hong, W.; Liu, Y. Q.; Wang, J.; Wang, E. K. A new kind of highly active hollow flower-like NiPdPt nanoparticles supported by multiwalled-carbon nanotubes toward ethanol electrooxidation. J. Power Sources 2013, 241, 751–755.

5

Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.

6

Antolini, E.; Gonzalez, E. R. Alkaline direct alcohol fuel cells. J. Power Sources 2010, 195, 3431–3450.

7

Qian, W. M.; Wilkinson, D. P.; Shen, J.; Wang, H. J.; Zhang, J. J. Architecture for portable direct liquid fuel cells. J. Power Sources 2006, 154, 202–213.

8

Guo, S. J.; Dong, S. J.; Wang, E. K. Pt/Pd bimetallic nanotubes with petal-like surfaces for enhanced catalytic activity and stability towards ethanol electrooxidation. Energy Environ. Sci. 2010, 3, 1307–1310.

9

Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.

10

Lai, S. C. S.; Koper, M. T. M. Ethanol electro-oxidation on platinum in alkaline media. Phys. Chem. Chem. Phys. 2009, 11, 10446–10456.

11

Si, W. F.; Li, J.; Li, H. Q.; Li, S. S.; Yin, J.; Xu, H.; Guo, X. W.; Zhang, T.; Song, Y. J. Light-controlled synthesis of uniform platinum nanodendrites with markedly enhanced electrocatalytic activity. Nano Res. 2013, 6, 720–725.

12

Zheng, F. L.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

13

Ding, L. X.; Wang, A. L.; Li, G. R.; Liu, Z. Q.; Zhao, W. X.; Su, C. Y.; Tong, Y. X. Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation. J. Am. Chem. Soc. 2012, 134, 5730–5733.

14

Hu, Y. J.; Shao, Q.; Wu, P.; Zhang, H.; Cai, C. X. Synthesis of hollow mesoporous Pt–Ni nanosphere for highly active electrocatalysis toward the methanol oxidation reaction. Electrochem. Commun. 2012, 18, 96–99.

15

Wang, K. L.; Wang, H.; Pasupathi, S.; Linkov, V.; Ji, S.; Wang, R. F. Palygorskite promoted PtSn/carbon catalysts and their intrinsic catalytic activity for ethanol oxidation. Electrochim. Acta 2012, 70, 394–401.

16

Yin, A. X.; Min, X. Q.; Zhang, Y. W.; Yan, C. H. Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes. J. Am. Chem. Soc. 2011, 133, 3816–3819.

17

Yin, A. X.; Min, X. Q.; Zhu, W.; Wu, H. S.; Zhang, Y. W.; Yan, C. H. Multiply twinned Pt-Pd nanoicosahedrons as highly active electrocatalysts for methanol oxidation. Chem. Commun. 2012, 48, 543–545.

18

Ji, H. Q.; Li, M. G.; Wang, Y. L.; Gao, F. Electrodeposition of graphene-supported PdPt nanoparticles with enhanced electrocatalytic activity. Electrochem. Commun. 2012, 24, 17–20.

19

Yang, H. Z.; Zhang, J.; Sun, K.; Zou, S. Z.; Fang, J. Y. Enhancing by weakening: Electrooxidation of methanol on Pt3Co and Pt nanocubes. Angew. Chem. Int. Ed. 2010, 49, 6848–6851.

20

Saleem, F.; Zhang, Z. C.; Xu, B.; Xu, X. B.; He, P. L.; Wang, X. Ultrathin Pt-Cu nanosheets and nanocones. J. Am. Chem. Soc. 2013, 135, 18304–18307.

21

Xu, D.; Liu, Z. P.; Yang, H. Z.; Liu, Q. S.; Zhang, J.; Fang, J. Y.; Zou, S. Z.; Sun, K. Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes. Angew. Chem. Int. Ed. 2009, 48, 4217–4221.

22

Qi, Y.; Bian, T.; Choi, S. I.; Jiang, Y. Y.; Jin, C. H.; Fu, M. S.; Zhang, H.; Yang, D. R. Kinetically controlled synthesis of Pt-Cu alloy concave nanocubes with high-index facets for methanol electro-oxidation. Chem. Commun. 2014, 50, 560–562.

23

Hong, J. W.; Kim, D.; Lee, Y. W.; Kim, M.; Kang, S. W.; Han, S. W. Atomic-distribution-dependent electrocatalytic activity of Au-Pd bimetallic nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 8876–8880.

24

Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 2011, 133, 6078–6089.

25

Zhou, Z. Y.; Huang, Z. Z.; Chen, D. J.; Wang, Q.; Tian, N.; Sun, S. G. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew. Chem. Int. Ed. 2010, 49, 411–414.

26

Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.

27

Yin, A. X.; Min, X. Q.; Zhu, W.; Liu, W. C.; Zhang, Y. W.; Yan, C. H. Pt-Cu and Pt-Pd-Cu concave nanocubes with high-index facets and superior electrocatalytic activity. Chem. —Eur. J. 2012, 18, 777–782.

28

Gong, M. X.; Fu, G. T.; Chen, Y.; Tang, Y. W.; Lu, T. H. Autocatalysis and selective oxidative etching induced synthesis of platinum-copper bimetallic alloy nanodendrites electrocatalysts. ACS Appl. Mater. Interfaces 2014, 6, 7301–7308.

29

Yu, X. F.; Wang, D. S.; Peng, Q.; Li, Y. D. High performance electrocatalyst: Pt-Cu hollow nanocrystals. Chem. Commun. 2011, 47, 8094–8096.

30

Nosheen, F.; Zhang, Z. C.; Xiang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Threedimensional hierarchical Pt-Cu superstructures. Nano Res. 2015, 8, 832–838.

31

Alia, S. M.; Jensen, K.; Contreras, C.; Garzon, F.; Pivovar, B.; Yan, Y. S. Platinum coated copper nanowires and platinum nanotubes as oxygen reduction electrocatalysts. ACS Catal. 2013, 3, 358–362.

32

Xia, B. Y.; Ng, W. T.; Wu, H. B.; Wang, X.; Lou, X. W. Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells. Angew. Chem. Int. Ed. 2012, 51, 7213–7216.

33

Hong, W.; Wang, J.; Wang, E. K. Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation. Small 2014, 10, 3262–3265.

34

Hong, W.; Wang, J.; Wang, E. K. Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation. ACS Appl. Mater. Interfaces 2014, 6, 9481–9487.

35

Lee, K. B.; Lee, S. M.; Cheon, J. Size-controlled synthesis of Pd nanowires using a mesoporous silica template via chemical vapor infiltration. Adv. Mater. 2001, 13, 517–520.

36

Mayers, B.; Jiang, X. C.; Sunderland, D.; Cattle, B.; Xia, Y. N. Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids. J. Am. Chem. Soc. 2003, 125, 13364–13365.

37

Sun, Y. G.; Tao, Z. L.; Chen, J.; Herricks, T.; Xia, Y. N. Ag nanowires coated with Ag/Pd alloy sheaths and their use as substrates for reversible absorption and desorption of hydrogen. J. Am. Chem. Soc. 2004, 126, 5940–5941.

38

Qian, H. S.; Yu, S. H.; Gong, J. Y.; Luo, L. B.; Fei, L. F. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly(vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 2006, 22, 3830–3835.

39

Wang, K.; Yang, Y.; Liang, H. W.; Liu, J. W.; Yu, S. H. First sub-kilogram-scale synthesis of high quality ultrathin tellurium nanowires. Mater. Horiz. 2014, 1, 338–343.

40

Liang, H. W.; Liu, S.; Gong, J. Y.; Wang, S. B.; Wang, L.; Yu, S. H. Ultrathin Te nanowires: An excellent platform for controlled synthesis of ultrathin platinum and palladium nanowires/nanotubes with very high aspect ratio. Adv. Mater. 2009, 21, 1850–1854.

41

Zhu, C. Z.; Guo, S. J.; Dong, S. J. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules. Adv. Mater. 2012, 24, 2326–2331.

42

Cao, X.; Wang, N.; Jia, S.; Shao, Y. H. Detection of glucose based on bimetallic PtCu nanochains modified electrodes. Anal. Chem. 2013, 85, 5040–5046.

43

Mintsouli, I.; Georgieva, J.; Armyanov, S.; Valova, E.; Avdeev, G.; Hubin, A.; Steenhaut, O.; Dille, J.; Tsiplakides, D.; Balomenou, S. et al. Pt-Cu electrocatalysts for methanol oxidation prepared by partial galvanic replacement of Cu/carbon powder precursors. Appl. Catal. B 2013, 136–137, 160–167.

44

Liu, D.; Yang, L.; Huang, J. S.; Guo, Q. H.; You, T. Y. Synthesis of Pt nanoparticle-loaded 1-aminopyrene functionalized reduced graphene oxide and its excellent electrocatalysis. RSC Adv. 2014, 4, 13733–13737.

45

Yao, Z. Q.; Yue, R. R.; Zhai, C. Y.; Jiang, F. X.; Wang, H. W.; Du, Y. K.; Wang, C. Y.; Yang, P. Electrochemical layer-by-layer fabrication of a novel three-dimensional Pt/graphene/carbon fiber electrode and its improved catalytic performance for methanol electrooxidation in alkaline medium. Int. J. Hydrogen Energy 2013, 38, 6368–6376.

46

Wang, L.; Yamauchi, Y. Synthesis of mesoporous Pt nanoparticles with uniform particle size from aqueous surfactant solutions toward highly active electrocatalysts. Chem. —Eur. J. 2011, 17, 8810–8815.

47

Xu, C. W.; Wang, H.; Shen, P. K.; Jiang, S. P. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells. Adv. Mater. 2007, 19, 4256–4259.

48

Kim, Y.; Lee, Y. W.; Kim, M.; Han, S. W. One-pot synthesis and electrocatalytic properties of Pd@Pt core-shell nanocrystals with tailored morphologies. Chem. —Eur. J. 2014, 20, 7901–7905.

49

Li, H. H.; Zhao, S.; Gong, M.; Cui, C. H.; He, D.; Liang, H. W.; Wu, L.; Yu, S. H. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem. Int. Ed. 2013, 52, 7472–7476.

50

Yu, X. F.; Wang, D. S.; Peng, Q.; Li, Y. D. Pt-M (M = Cu, Co, Ni, Fe) nanocrystals: From small nanoparticles to wormlike nanowires by oriented attachment. Chem. —Eur. J. 2013, 19, 233–239.

51

Lai, S. C. S.; Koper, M. T. M. Ethanol electro-oxidation on platinum in alkaline media. Phys. Chem. Chem. Phys. 2009, 11, 10446–10456.

52

Liang, Z. X.; Zhao, T. S.; Xu, J. B.; Zhu, L. D. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim. Acta 2009, 54, 2203–2208.

Nano Research
Pages 2308-2316
Cite this article:
Hong W, Wang J, Wang E. Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity. Nano Research, 2015, 8(7): 2308-2316. https://doi.org/10.1007/s12274-015-0741-y

780

Views

95

Crossref

N/A

Web of Science

99

Scopus

16

CSCD

Altmetrics

Received: 12 December 2014
Revised: 14 January 2015
Accepted: 03 February 2015
Published: 07 May 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return