Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Using spark plasma sintering (SPS), Mn3Cu0.6Ge0.4N crystallites have been fabricated with different crystallite sizes, and their magnetic properties and thermal behaviors were systemically investigated. With decreasing crystallite size, the magnetic transition becomes increasingly slow, accompanied by broadening of the negative thermal expansion (NTE) operation-temperature window. The NTE operation-temperature window for the 12-nm crystallite sample reaches at 140 K, which is about 75% larger than that of the 74-nm crystallite sample. The magnetic properties and NTE operation-temperature window can be tuned by varying the crystallite size. This discovery will promote an even wider range of practical applications in precision devices.
Evans, J. S. O.; Hu, Z.; Jorgensen, J. D.; Argyriou, D. N.; Short, S.; Sleight, A. W. Compressibility, phase transitions, and oxygen migration in zirconium tungstate, ZrW2O8. Science 1997, 275, 61–65.
Li, W. H.; Wu, S. Y.; Yang, C. C.; Lai, S. K.; Lee, K. C.; Huang, H. L.; Yang, H. D. Thermal contraction of Au nanoparticles. Phys. Rev. Lett. 2002, 89, 135504.
Takenaka, K.; Takagi, H. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl. Phys. Lett. 2005, 87, 261902.
Sun, Y.; Wang, C.; Wen, Y. C.; Zhu, K. G.; Zhao, J. T. Lattice contraction and magnetic and electronic transport properties of Mn3Zn1-xGexN. Appl. Phys. Lett. 2007, 91, 231913.
Zheng, X. G.; Kubozono, H.; Yamada, H.; Kato, K.; Ishiwata, Y.; Xu, C. N. Giant negative thermal expansion in magnetic nanocrystals. Nat. Nanotechnol. 2008, 3, 724–726.
Grigoriadis, C.; Haase, N.; Butt, H. J.; Müllen, K.; Floudas, G. Negative thermal expansion in discotic liquid crystals of nanographenes. Adv. Mater. 2010, 22, 1403–1406.
Hu, P. H.; Chen, J.; Deng, J. X.; Xing, X. R. Thermal expansion, ferroelectric and magnetic properties in (1-x)PbTiO3-xBi(Ni1/2Ti1/2)O3. J. Am. Chem. Soc. 2010, 132, 1925–1928.
Azuma, M.; Chen, W. T.; Seki, H.; Czapski, M.; Olga, S.; Oka, K.; Mizumaki, M.; Watanuki, T.; Ishimatsu, N.; Kawamura, N. et al. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer. Nat. Commun. 2011, 2, 347.
Li, C. W.; Tang, X. L.; Muñoz, J. A.; Keith, J. B.; Tracy, S. J.; Abernathy, D. L.; Fultz, B. Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. Phys. Rev. Lett. 2011, 107, 195504.
Lin, J. C.; Wang, B. S.; Lin, S.; Tong, P.; Lu, W. J.; Zhang, L.; Song, W. H.; Sun, Y. P. The study of negative thermal expansion and magnetic evolution in antiperovskite compounds Cu08-x. SnxMn0.2NMn3 (0≤x≤0.3). J. Appl. Phys. 2012, 111, 043905.
Chen, J.; Fan, L. L.; Ren, Y.; Pan, Z.; Deng, J. X.; Yu, R. B.; Xing, X. R. Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3 perovskite. Phys. Rev. Lett. 2013, 110, 115901.
Chen, J.; Wang, F. F.; Huang, Q. Z.; Hu, L.; Song, X. P.; Deng, J. X.; Yu, R. B.; Xing, X. R. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi, La)FeO3 over a giant range. Sci. Rep. 2013, 3, 2458.
Huang, R. J.; Liu, Y. Y.; Fan, W.; Tan, J.; Xiao, F. R.; Qian, L. H.; Li, L. F. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds. J. Am. Chem. Soc. 2013, 135, 11469–11472.
Tong, P.; Louca, D.; King, G.; Llobet, A.; Lin, J. C.; Sun, Y. P. Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1-xSnxNMn3. Appl. Phys. Lett. 2013, 102, 041908.
Takenaka, K.; Ozawa, A.; Shibayama, T.; Kaneko, N.; Oe, T.; Urano, C. Extremely low temperature coefficient of resistance in antiperovskite Mn3Ag1-xCuxN. Appl. Phys. Lett. 2011, 98, 022103.
Chen, Z.; Huang, R. J.; Chu, X. X.; Wu, Z. X.; Liu, Z. N.; Zhou, Y.; Li, L. F. Negative thermal expansion and nearly zero temperature coefficient of resistivity in anti-perovskite manganese nitride Mn3CuN co-doped with Ag and Sn. Cryogenics 2012, 52, 629–631.
Huang, R. J.; Li, L. F.; Cai, F. S.; Xu, X. D.; Qian, L. H. Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si. Appl. Phys. Lett. 2008, 93, 081902.
Sun, Y.; Guo, Y. F.; Tsujimoto, Y.; Yang, J. J.; Shen, B.; Yi, W.; Matsushita, Y.; Wang, C.; Wang, X.; Li, J. et al. Carbon-induced ferromagnetism in the antiferromagnetic metallic host material Mn3ZnN. Inorg. Chem. 2013, 52, 800–806.
Iikubo, S.; Kodama, K.; Takenaka, K.; Takagi, H.; Takigawa, M.; Shamoto, S. Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN. Phys. Rev. Lett. 2008, 101, 205901.
Takenaka, K.; Asano, K.; Misawa, M.; Takagi, H. Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect. Appl. Phys. Lett. 2008, 92, 011927.
Daengsakul, S.; Thomas, C.; Mongkolkachit, C.; Maensirt, S. Effects of crystallite size on magnetic properties of thermalhydro decomposition prepared La1-xSrxMnO3 nanocrystalline powders. Solid State Sci. 2012, 14, 1306–1314.
Li, X. G.; Zhang, T. Size effects on charge ordering and magnetic properties in La. 250Ca0.75MnO3. Ceram. Int. 2009, 35, 151–155.
Chia, C. H.; Zakaria, S.; Yusoff, M.; Goh, S. C.; Haw, C. Y.; Ahmadi, Sh.; Huang, N. M.; Lim, H. N. Size and crystallinitydependent magnetic properties of CoFe2O4 nanocrystals. Ceram. Int. 2010, 36, 605–609.
Prylypko, S. Y.; Akimov, G. Y.; Revenko, Y. F.; Varyukhin, V. N. Crystallite size and magnetic properties of La0.7Mn1.3O3±Δ. Tech. Phys. 2010, 55, 1056–1057.
Berkowitz, A. E; Schuele, W. J.; Flanders, P. J. Influence of crystallite size on the magnetic properties of acicular γ-Fe2O3 particles. J. Appl. Phys. 1968, 39, 1261–1263.
Wang, X.; Nie, S. H.; Li, J. J.; Clinite, R.; Wartenbe, M.; Martin, M.; Liang, W. X.; Cao, J. M. Electronic Grüneisen parameter and thermal expansion in ferromagnetic transition metal. Appl. Phys. Lett. 2008, 92, 121918.
Zhang, Y. Q.; Zhang, Z. D.; Aarts, J. First-order nature of a metamagnetic transition and mechanism of giant magnetoresistance in Mn2Sb0.95Sn0.05. Phys. Rev. B 2004, 70, 132407.
Zhang, B.; Zhang, X. X.; Yu, S. Y.; Chen, J. L.; Cao, Z. X.; Wu, G. H. Giant magnetothermal conductivity in the Ni-Mn-In ferromagnetic shape memory alloys. Appl. Phys. Lett. 2007, 91, 012510.
Gu, R. Y.; Wang, Z. D.; Ting, C. S. Theory of electric-fieldinduced metal-insulator transition in doped manganites. Phys. Rev. B 2003, 67, 153101.
Bhowmik, R. N.; Nagarajan, R.; Ranganathan, R. Magnetic enhancement in antiferromagnetic nanoparticle of CoRh2O4. Phys. Rev. B 2004, 69, 054430.