AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Extreme biomimetic approach for developing novel chitin-GeO2 nanocomposites with photoluminescent properties

Marcin Wysokowski1Mykhailo Motylenko2Jan Beyer3Anna Makarova4Hartmut Stöcker5Juliane Walter5Roberta Galli6Sabine Kaiser5Denis Vyalikh4,7Vasilii V. Bazhenov5( )Iaroslav Petrenko5Allison L. Stelling8Serguei L. Molodtsov5,9,10Dawid Stawski11Krzysztof J. Kurzydłowski12Enrico Langer13Mikhail V. Tsurkan14Teofil Jesionowski1Johannes Heitmann3Dirk C. Meyer5Hermann Ehrlich5( )
Institute of Chemical Technology and EngineeringPoznan University of Technology60965Poznan, Poland
Institute of Materials ScienceTU Bergakademie Freiberg09599Freiberg, Germany
Institute of Applied PhysicsTU Bergakademie Freiberg09599Freiberg, Germany
Institute of Solid State PhysicsDresden University of Technology01069Dresden, Germany
Institute of Experimental PhysicsTU Bergakademie Freiberg09599Freiberg, Germany
Faculty of Medicine Carl Gustav CarusDepartment of Anaesthesiology and Intensive Care MedicineClinical Sensoring and MonitoringTU Dresden01069Dresden, Germany
Department of PhysicsSt. Petersburg State University198504St. Petersburg, Russia
Department of Mechanical Engineering and Materials ScienceDuke University27708Durham, NC, USA
European X-Ray Free-Electron Laser Facility (XFEL) GmbH22761Hamburg, Germany
ITMO University197101St. Petersburg, Russia
Department of Commodity and Material Sciences and Textile MetrologyTechnical University of Lodz90924Lódź, Poland
Materials Design GroupFaculty of Materials Science and EngineeringWarsaw University of TechnologyPL-02507, WarsawPoland
Institute of Semiconductors and MicrosystemsTU Dresden01062Dresden, Germany
Leibniz Institute of Polymer ResearchMax Bergmann Centre for Biomaterials01062Dresden, Germany
Show Author Information

Graphical Abstract

Abstract

This work presents an extreme biomimetics route for the creation of nanostructured biocomposites utilizing a chitinous template of poriferan origin. The specific thermal stability of the nanostructured chitinous template allowed for the formation under hydrothermal conditions of a novel germanium oxide-chitin composite with a defined nanoscale structure. Using a variety of analytical techniques (FTIR, Raman, energy dispersive X-ray (EDX), near-edge X-ray absorption fine structure (NEXAFS), and photoluminescence (PL) spectroscopy, EDS-mapping, selected area for the electron diffraction pattern (SAEDP), and transmission electron microscopy (TEM)), we showed that this bioorganic scaffold induces the growth of GeO2 nanocrystals with a narrow (150–300 nm) size distribution and predominantly hexagonal phase, demonstrating the chitin template's control over the crystal morphology. The formed GeO2–chitin composite showed several specific physical properties, such as a striking enhancement in photoluminescence exceeding values previously reported in GeO2-based biomaterials. These data demonstrate the potential of extreme biomimetics for developing new-generation nanostructured materials.

Electronic Supplementary Material

Download File(s)
12274_2015_739_MOESM1_ESM.pdf (2.7 MB)

References

1

Ehrlich, H. Biological Materials of Marine Origin; Springer Science+Business Media: Dordrecht, 2015.

2

Ehrlich, H.; Simon, P.; Motylenko, M.; Wysokowski, M.; Bazhenov, V. V.; Galli, R.; Stelling, A. L.; Stawski, D.; Ilan, M.; Stöcker, H. et al. Extreme biomimetics: Formation of zirconium dioxide nanophase using chitinous scaffolds under hydrothermal conditions. J. Mater. Chem. B 2013, 1, 5092–5099.

3

Wysokowski, M.; Motylenko, M.; Bazhenov, V. V.; Stawski, D.; Petrenko, I.; Ehrlich, A.; Behm, T.; Kljajic, Z.; Stelling, A. L.; Jesionowski, T. et al. Poriferan chitin as a template for hydrothermal zirconia deposition. Front. Mater. Sci. 2013, 7, 248–260.

4

Wysokowski, M.; Motylenko, M.; Stöcker, H.; Bazhenov, V. V.; Langer, E.; Dobrowolska, A.; Czaczyk, K.; Galli, R.; Stelling, A. L.; Behm, T. et al. An extreme biomimetic approach: Hydrothermal synthesis of β-chitin/ZnO nanostructured composites. J. Mater. Chem. B 2013, 1, 6469–6476.

5

Wysokowski, M.; Motylenko, M.; Walter, J.; Lota, G.; Wojciechowski, J.; Stöcker, H.; Galli, R.; Stelling, A. L.; Himcinschi, C.; Niederschlag, E. et al. Synthesis of nanostructured chitin–hematite composites under extreme biomimetic conditions. RSC Adv. 2014, 4, 61743–61752.

6

Wysokowski, M.; Behm, T.; Born, R.; Bazhenov, V. V.; Meiβner, H.; Richter, G.; Szwarc-Rzepka, K.; Makarova, A.; Vyalikh, D.; Schupp, P. et al. Preparation of chitin-silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions. Mater. Sci. Eng. C 2013, 33, 3935–3941.

7

Wysokowski, M.; Piasecki, A.; Bazhenov, V. V.; Paukszta, D.; Born, R.; Petrenko, I.; Jesionowski, T. Poriferan chitin as the scaffold for nanosilica deposition under hydrothermal synthesis conditions. J. Chitin Chitosan Sci. 2013, 1, 26–33.

8

Ehrlich, H. Chitin and collagen as universal and alternative templates in biomineralization. Int. Geol. Rev. 2010, 52, 661–699.

9

Roberts, G. A. F. Chitin chemistry, 1st ed.; MacMillian: London, 1992.

10

Muzzarelli, R. A. A.; Boudrant, J.; Meyer, D.; Manno, N.; DeMarchis, M.; Paoletti, M. G. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr. Polym. 2012, 87, 995–1012.

11

Ehrlich, H.; Rigby, J. K.; Botting, J. P.; Tsurkan, M.; Werner, C.; Schwille, P.; Petrášek, Z.; Pisera, A.; Simon, P.; Sivkov, V. et al. Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci. Rep. 2013, 3, 3497.

12

Stawski, D.; Rabiej, S.; Herczyńska, L.; Draczyński, Z. Thermogravimetric analysis of chitins of different origin. J. Therm. Anal. Calorim. 2008, 93, 489–494.

13

Georgieva, V.; Zvezdova, D.; Vlaev, L. Non-isothermal kinetics of thermal degradation of chitin. J. Therm. Anal. Calorim. 2013, 111, 763–771.

14

Wang, Y. C.; Chang, Y. G.; Yu, L.; Zhang, C. Y.; Xu, X. Q.; Xue, Y.; Li, Z. J.; Xue, C. H. Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba). Carbohydr. Polym. 2013, 92, 90–97.

15

Aida, T. M.; Oshima, K.; Abe, C.; Maruta, R.; Iguchi, M.; Watanabe, M.; Smith, R. L. Dissolution of mechanically milled chitin in high temperature water. Carbohydr. Polym. 2014, 106, 172–178.

16

Ramana, C. V.; Carbajal-Franco, G.; Vemuri, R. S.; Troitskaia, I. B.; Gromilov, S. A.; Atuchin, V. V. Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure. Mater. Sci. Eng. B 2010, 174, 279–284.

17

Heigl, F.; Armelao, L.; Sun, X. H. J.; Didychuk, C.; Zhou, X. T.; Regier, T.; Blyth, R. I. R.; Kim, P. S. G.; Rosenberg, R. A; Sham, T. K. XANES and photoluminescence studies of crystalline GeO2 (Tb) nanowires. J. Phys. -Conf. Ser. 2009, 190, 012130.

18

Javadi, M.; Yang, Z. Y.; Veinot, J. G. C. Surfactant-free synthesis of GeO2 nanocrystals with controlled morphologies. Chem. Commun. 2014, 50, 6101–6104.

19

Zhang, S. W.; Yin, B. S.; Jiao, Y.; Liu, Y.; Zhang, X.; Qu, F. Y.; Umar, A.; Wu, X. Ultra-long germanium oxide nanowires: Structures and optical properties. J. Alloys Compd. 2014, 606, 149–153.

20

Balitskiĭ, D. B.; Sil'vestrova, O. Y.; Balitskiĭ, V. S.; Pisarevskiĭ, Y. V; Pushcharovskiĭ, D. Y.; Philippot, E. Elastic, piezoelectric, and dielectric properties of α-GeO2 single crystals. Crystallogr. Reports 2000, 45, 145–147.

21

Zhao, Q.; Lorenz, H.; Turner, S.; Lebedev, O. I.; Van Tendeloo, G.; Rameshan, C.; Klötzer, B.; Konzett, J.; Penner, S. Catalytic characterization of pure SnO2 and GeO2 in methanol steam reforming. Appl. Catal. A-Gen. 2010, 375, 188–195.

22

Seng, K. H.; Park, M. H.; Guo, Z. P.; Liu, H. K.; Cho, J. Catalytic role of Ge in highly reversible GeO2/Ge/C nanocomposite anode material for lithium batteries. Nano Lett. 2013, 13, 1230–1236.

23

Richet, P. GeO2 vs SiO2: Glass transitions and thermodynamic properties of polymorphs. Phys. Chem. Miner. 1990, 17, 79–88.

24

Madon, M.; Gillet, P.; Julien, C.; Price, G. A vibrational study of phase transitions among the GeO2 polymorphs. Phys. Chem. Miner. 1991, 18, 7–18.

25

Lippincott, E. R.; Van Valkenburg, A.; Weir, C. E.; Bunting, E. N. Infrared studies on polymorphs of silicon dioxide and germanium dioxide. J. Res. Natl. Bur. Stand. 1958, 61, 61–70.

26

Micoulaut, M.; Cormier, L.; Henderson, G. S. The structure of amorphous, crystalline and liquid GeO2. J. Phys. -Condens. Matter 2006, 18, R753–R784.

27

Jang, J.; Koo, J.; Bae, B. S. Fabrication and ultraviolet absorption of sol-gel derived germanium oxide glass thin films. J. Am. Ceram. Soc. 2000, 83, 1356–1360.

28

Laubengayer, A. W.; Brandt, P. L. Germanium. XXXVII. Germanium dioxide gel. Preparation and properties. J. Am. Chem. Soc. 1932, 54, 549–552.

29

Krishnan, V.; Gross, S.; Müller, S.; Armelao, L.; Tondello, E.; Bertagnolli, H. Structural investigations on the hydrolysis and condensation behavior of pure and chemically modified alkoxides. 2. Germanium alkoxides. J. Phys. Chem. B 2007, 111, 7519–7528.

30

Jiang, Z.; Xie, T.; Wang, G. Z.; Yuan, X. Y.; Ye, C. H.; Cai, W. P.; Meng, G. W.; Li, G. H.; Zhang, L. D. GeO2 nanotubes and nanorods synthesized by vapor phase reactions. Mater. Lett. 2005, 59, 416–419.

31

Wu, H. P.; Liu, J. F.; Ge, M. Y.; Niu, L.; Zeng, Y. W.; Wang, Y. W.; Lv, G. L.; Wang, L. N.; Zhang, G. Q.; Jiang, J. Z. Preparation of monodisperse GeO2 nanocubes in a reverse micelle system. Chem. Mater. 2006, 18, 1817–1820.

32

Ramana, C. V.; Troitskaia, I. B.; Gromilov, S. A.; Atuchin, V. V. Electrical properties of germanium oxide with α-quartz structure prepared by chemical precipitation. Ceram. Int. 2012, 38, 5251–5255.

33

Atuchin, V. V.; Gavrilova, T. A.; Gromilov, S. A.; Kostrovsky, V. G.; Pokrovsky, L. D.; Troitskaia, I. B.; Vemuri, R. S.; Carbajal-Franco, G.; Ramana, C. V. Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with α-quartz structure. Cryst. Growth Des. 2009, 9, 1829–1832.

34

Shinde, S. L.; Nanda, K. K. Thermal oxidation strategy for the synthesis of phase-controlled GeO2 and photoluminescence characterization. CrystEngComm 2013, 15, 1043–1046.

35

Gunji, M.; Thombare, S. V.; Hu, S.; McIntyre, P. C. Directed synthesis of germanium oxide nanowires by vapor-liquidsolid oxidation. Nanotechnology 2012, 23, 385603.

36

Zhang, Y. J.; Zhu, J.; Zhang, Q.; Yan, Y. J.; Wang, N. L.; Zhang, X. Z. Synthesis of GeO2 nanorods by carbon nanotubes template. Chem. Phys. Lett. 2000, 317, 504–509.

37

Lu, Q. Y.; Gao, F.; Li, Y. Q.; Zhou, Y. M.; Zhao, D. Y. Synthesis of germanium oxide mesostructures with a new intermediate state. Microporous Mesoporous Mater. 2002, 56, 219–225.

38

Zou, X. D.; Conradsson, T.; Klingstedt, M.; Dadachov, M. S.; O'Keeffe, M. A mesoporous germanium oxide with crystalline pore walls and its chiral derivative. Nature 2005, 437, 716–719.

39

Cheng, J.; Xu, R. R.; Yang, G. D. Synthesis, structure and characterization of a novel germanium dioxide with occluded tetramethylammonium hydroxide. J. Chem. Soc., Dalton Trans. 1991, 1537–1540.

40

Rimer, J. D.; Roth, D. D.; Vlachos, D. G.; Lobo, R. F. Self-assembly and phase behavior of germanium oxide nanoparticles in basic aqueous solutions. Langmuir 2007, 23, 2784–2791.

41

Kim, H. Y.; Viswanathamurthi, P.; Bhattarai, N.; Lee, D. R. Preparation and morphology of germanium oxide nanofibers. Rev. Adv. Mater. Sci 2003, 5, 220–223.

42

Patwardhan, S. V.; Clarson, S. J. Bioinspired mineralisation: Macromolecule mediated synthesis of amorphous germania structures. Polymer 2005, 46, 4474–4479.

43

Davis, T. M.; Snyder, M. A.; Tsapatsis, M. Germania nanoparticles and nanocrystals at room temperature in water and aqueous lysine sols. Langmuir 2007, 23, 12469–12472.

44

Sewell, S. L.; Rutledge, R. D.; Wright, D. W. Versatile biomimetic dendrimer templates used in the formation of TiO2 and GeO2. Dalton Trans. 2008, 3857–3865.

45

Boix, E.; Puddu, V.; Perry, C. C. Preparation of hexagonal GeO2 particles with particle size and crystallinity controlled by peptides, silk and silk-peptide chimeras. Dalton Trans. 2014, 43, 16902–16910.

46

Ehrlich, H.; Ilan, M.; Maldonado, M.; Muricy, G.; Bavestrello, G.; Kljajic, Z.; Carballo, J. L.; Schiaparelli, S.; Ereskovsky, A.; Schupp, P. et al. Three-dimensional chitinbased scaffolds from Verongida sponges (Demospongiae: Porifera). Part Ⅰ. Isolation and identification of chitin. Int. J. Bol. Macromol. 2010, 47, 132–140.

47

Fedoseenko, S.; Vyalikh, D.; Iossifov, I.; Follath, R.; Gorovikov, S.; Püttner, R.; Schmidt, J. S.; Molodtsov, S.; Adamchuk, V.; Gudat, W. et al. Commissioning results and performance of the high-resolution Russian–German Beamline at BESSY Ⅱ. Nucl. Instrum. Meth. A 2003, 505, 718–728.

48

Kucheyev, S. O.; Baumann, T. F.; Wang, Y. M.; van Buuren, T.; Poco, J. F.; Satcher, J. H.; Hamza, A. V. Monolithic, high surface area, three-dimensional GeO2 nanostructures. Appl. Phys. Lett. 2006, 88, 103117.

49

Bertini, L.; Ghigna, P.; Scavini, M.; Cargnoni, F. Germanium K edge in GeO2 polymorphs. Correlation between local coordination and electronic structure of germanium. Phys. Chem. Chem. Phys. 2003, 5, 1451–1456.

50

Cárdenas, G.; Cabrera, G.; Taboada, E.; Miranda, S. P. Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. J. Appl. Polym. Sci. 2004, 93, 1876–1885.

51

Ehrlich, H.; Maldonado, M.; Spindler, K.; Eckert, C.; Hanke, T.; Born, R.; Simon, P.; Heinemann, S.; Worch, H. First evidence of chitin as a component of the skeletal fibers of marine sponges. Part Ⅰ. Verongidae (demospongia: Porifera). J. Exp. Zool. Part B 2007, 356, 347–356.

52

Kanno, Y.; Nishino, J. Effect of hydrolysis water on the crystallization of sol–gel-derived GeO2. J. Mater. Sci. Lett. 1993, 12, 110–112.

53

Zou, X.; Liu, B. B.; Li, Q. J.; Li, Z. P.; Liu, B.; Wu, W.; Zhao, Q.; Sui, Y. M.; Li, D. M.; Zou, B. et al. One-step synthesis, growth mechanism and photoluminescence properties of hollow GeO2 walnuts. CrystEngComm 2011, 13, 979–984.

54

Viswanathamurthi, P.; Bhattarai, N.; Kim, H. Y.; Khil, M. S.; Lee, D. R.; Suh, E. K. GeO2 fibers: Preparation, morphology and photoluminescence property. J. Chem. Phys. 2004, 121, 441–445.

55

Wu, W.; Zou, X.; Li, Q. J.; Liu, B. B.; Liu, B.; Liu, R.; Liu, D. D.; Li, Z. P.; Cui, W.; Liu, Z. D. et al. Simple synthesis and luminescence characteristics of PVP-capped GeO2 nanoparticles. J. Nanomater. 2011, 2011, 841701.

56

Jing, C. B.; Hou, J. X.; Xu, X. G. Fabrication and optical characteristics of thick GeO2 sol–gel coatings. Opt. Mater. 2008, 30, 857–864.

57

Pearson, F. G.; Marchessault, R. H.; Liang, C. Y. Infrared spectra of crystalline polysaccharides. V. Chitin. J. Polym. Sci. 1960, 43, 101–116

58

Qin, J. W.; Wang, X.; Cao, M. H.; Hu, C. W. Germanium quantum dots embedded in N-doping graphene matrix with sponge-like architecture for enhanced performance in lithium-ion batteries. Chem. —Eur. J. 2014, 20, 9675–9682.

59

Haines, J.; Cambon, O.; Philippot, E.; Chapon, L.; Hull, S. A neutron diffraction study of the thermal stability of the α-quartz-type structure in germanium dioxide. J. Solid State Chem. 2002, 166, 434–441.

60

Bolzan, A. A.; Fong, C.; Kennedy, B. J.; Howard C. J. Structural studies of rutile-type metal dioxides. Acta Crystallogr. B 1997, 53, 373–380.

61

Pöhlker, C.; Huffman, J. A.; Pöschl, U. Autofluorescence of atmospheric bioaerosols–Fluorescent biomolecules and potential interferences. Atmos. Meas. Tech. 2012, 5, 37–71.

62

Zacharias, M.; Fauchet, P. M. Blue luminescence in films containing Ge and GeO2 nanocrystals: The role of defects. Appl. Phys. Lett. 1997, 71, 380–382.

63

Kim, H. W.; Lee, J. W.; Kebede, M. A.; Kim, H. S.; Lee, C. Catalyst-free synthesis of GeO2 nanowires using the thermal heating of Ge powders. Curr. Appl. Phys. 2009, 9, 1300–1303.

64

Peng, M. F.; Li, Y.; Gao, J.; Zhang, D.; Jiang, Z.; Sun, X. H. Electronic structure and photoluminescence origin of singlecrystalline germanium oxide nanowires with green light emission. J. Phys. Chem. C 2011, 115, 11420–11426.

65

Shi, R. Y.; Zhang, R. G.; Chen, X. B.; Yang, F.; Zhao, Q.; Yu, J.; Zhao, H.; Wang, L.; Liu, B.; Bao, L. et al. Controllable growth of GeO2 nanowires with the cubic and hexagonal phases and their photoluminescence. J. Cryst. Growth 2011, 336, 6–13.

66

Yu, J.; Yang, H. Q.; Shi, R. Y.; Zhang, L. H.; Zhao, H.; Wang, X. W. Vapor–liquid–solid growth and narrow-band ultraviolet photoluminescence of well-aligned GeO2 nanowire arrays with controllable aspect ratios. Appl. Phys. A 2010, 100, 493–499.

67

Trukhin, A.; Kink, M.; Maksimov, Y.; Jansons, J.; Kink, R. Luminescence of GeO2 glass, rutile-like and α-quartz-like crystals. J. Non. Cryst. Solids 2006, 352, 160–166.

68

Narayanan, D.; Jayakumar, R.; Chennazhi, K. Versatile carboxymethyl chitin and chitosan nanomaterials: A review. Wiley Interdiscip. Rev. -Nanomed. Nanobiotechnol. 2014, 6, 574–598.

Nano Research
Pages 2288-2301
Cite this article:
Wysokowski M, Motylenko M, Beyer J, et al. Extreme biomimetic approach for developing novel chitin-GeO2 nanocomposites with photoluminescent properties. Nano Research, 2015, 8(7): 2288-2301. https://doi.org/10.1007/s12274-015-0739-5

786

Views

66

Crossref

N/A

Web of Science

65

Scopus

1

CSCD

Altmetrics

Received: 10 December 2014
Revised: 28 January 2015
Accepted: 29 January 2015
Published: 13 May 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return