Journal Home > Volume 8 , Issue 7

The addition of Au3+ to spherical amine-capped CdSe@ZnS nanoparticles in toluene at room temperature and under darkness can lead to ternary CdSe@ZnS/Au nanohybrids. We demonstrate that this happens only when the nanoparticles possess a relatively thin ZnS shell, thus showing that thickness plays a key role in gold deposition on the CdSe@ZnS nanoparticle surface. Our hypothesis is that the amine ligand acts as the reductant of Au3+ ions into Au+ ions, whose affinity for sulfur would keep them at the CdSe@ZnS surface. This interaction stabilizes the Au+ ion, making it less prone to reduction than a non-coordinated Au+ ion. In CdSe@ZnS with a thin shell, Au+ ions at the surface of, or most probably within, the ZnS shell cause the transfer of Cd2+ ions into the solution. Subsequently, the core Se2– anion, which is a better reductant than the shell S2–, reduces Au+ ions to Au(0), and large gold nanoparticles (AuNPs) are quickly deposited on the CdSe@ZnS surface in room temperature process, leading to ternary CdSe@ZnS/Au nanohybrids. In solution, these ternary nanohybrids progressively transform into quaternary CdSe@ZnS/Au2S/Au nanohybrids due to the reaction of the shell S2– anion with the remaining Au+ at the CdSe@ZnS surface, thus leading to the growth of Au2S nanoparticles on the CdSe@ZnS surface while Zn concomitantly leaches from the nanohybrid into the solution. Photoirradiation of the heterostructures with visible light enhances their emission efficiency. Comparatively, irradiation of the precursors, i.e., CdSe@ZnS nanoparticles, causes a drastic decrease in their emission accompanied by a blue shift of their emission maximum. The optical properties of these nanohybrids were analyzed by absorption and fluorescence (steady-state and time-resolved) spectroscopy, and the composition of the samples and the chemical states were determined by energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS), respectively. Finally, the structural and morphological characterizations of the nanohybrids were performed by bright-field transmission electron microscopy (TEM), dark-field TEM, high-resolution TEM (HRTEM), and selected-area electron diffraction (SAED).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Controlled building of CdSe@ZnS/Au and CdSe@ZnS/Au2S/Au nanohybrids

Show Author's information Raquel E. Galian1( )Pilar Diaz1,Antonio Ribera1Alejandro Rincón-Bertolín1Saïd Agouram2Julia Pérez-Prieto1( )
Instituto de Ciencia Molecular (ICMol)Universidad de Valencia, c/ Catedrático José Beltrán 246980Paterna, Valencia, Spain
Department of Applied Physics and ElectromagnetismDr. Moliner 50Universidad de Valencia46100Burjassot, Valencia, Spain

Present address: INNCEINNMAT S. L., Parc Cientific de la Universitat de València, c/Catedrático Agustín Escardino 9-Edifico 3 CUE, 46980 Paterna, Valencia, Spain

Abstract

The addition of Au3+ to spherical amine-capped CdSe@ZnS nanoparticles in toluene at room temperature and under darkness can lead to ternary CdSe@ZnS/Au nanohybrids. We demonstrate that this happens only when the nanoparticles possess a relatively thin ZnS shell, thus showing that thickness plays a key role in gold deposition on the CdSe@ZnS nanoparticle surface. Our hypothesis is that the amine ligand acts as the reductant of Au3+ ions into Au+ ions, whose affinity for sulfur would keep them at the CdSe@ZnS surface. This interaction stabilizes the Au+ ion, making it less prone to reduction than a non-coordinated Au+ ion. In CdSe@ZnS with a thin shell, Au+ ions at the surface of, or most probably within, the ZnS shell cause the transfer of Cd2+ ions into the solution. Subsequently, the core Se2– anion, which is a better reductant than the shell S2–, reduces Au+ ions to Au(0), and large gold nanoparticles (AuNPs) are quickly deposited on the CdSe@ZnS surface in room temperature process, leading to ternary CdSe@ZnS/Au nanohybrids. In solution, these ternary nanohybrids progressively transform into quaternary CdSe@ZnS/Au2S/Au nanohybrids due to the reaction of the shell S2– anion with the remaining Au+ at the CdSe@ZnS surface, thus leading to the growth of Au2S nanoparticles on the CdSe@ZnS surface while Zn concomitantly leaches from the nanohybrid into the solution. Photoirradiation of the heterostructures with visible light enhances their emission efficiency. Comparatively, irradiation of the precursors, i.e., CdSe@ZnS nanoparticles, causes a drastic decrease in their emission accompanied by a blue shift of their emission maximum. The optical properties of these nanohybrids were analyzed by absorption and fluorescence (steady-state and time-resolved) spectroscopy, and the composition of the samples and the chemical states were determined by energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS), respectively. Finally, the structural and morphological characterizations of the nanohybrids were performed by bright-field transmission electron microscopy (TEM), dark-field TEM, high-resolution TEM (HRTEM), and selected-area electron diffraction (SAED).

Keywords: fluorescence, heterostructures, semiconductor nanoparticle, metallic nanoparticle, time-resolved studies

References(62)

1

Medintz, I. L.; Mattoussi, H. Quantum dot-based resonance energy transfer and its growing application in biology. Phys. Chem. Chem. Phys. 2009, 11, 17–45.

2

Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

3

Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.

4

Cozzoli, P. D.; Pellegrino, T.; Manna, L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 2006, 35, 1195–1208.

5

Smith, A. M.; Duan, H. W.; Mohs, A. M.; Nie, S. M. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 2008, 60, 1226–1240.

6

Chan, W. C. W.; Maxwell, D. J.; Gao, X. H.; Bailey, R. E.; Han, M. Y.; Nie, S. M. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 2002, 13, 40–46.

7

Gill, R.; Zayats, M.; Willner, I. Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. 2008, 47, 7602–7625.

8

Algar, W. R.; Susumu, K.; Delehanty, J. B.; Medintz, I. L. Semiconductor quantum dots in bioanalysis: Crossing the valley of death. Anal. Chem. 2011, 83, 8826–8837.

9

Agudelo-Morales, C. E.; Galian, R. E.; Perez-Prieto, J. Pyrene-functionalized nanoparticles: Two independent sensors, the excimer and the monomer. Anal. Chem. 2012, 84, 8083–8087.

10

Aguilera-Sigalat, J.; Casas-Solvas, J. M.; Morant-Minana, M. C.; Vargas-Berenguel, A.; Galian, R. E.; Perez-Prieto, J. Quantum dot/cyclodextrin supramolecular systems based on efficient molecular recognition and their use for sensing. Chem. Commun. 2012, 48, 2573–2575.

11

Delgado-Pérez, T.; Bouchet, L. M.; de la Guardia, M.; Galian, R. E.; Pérez-Prieto, J. Sensing chiral drugs by using CdSe/ZnS nanoparticles capped with n-acetyl-l-cysteine methyl ester. Chem. —Eur. J. 2013, 19, 11068–11076.

12

Bhattacharya, P.; Ghosh, S.; Stiff-Roberts, A. D. Quantum dot opto-electronic devices. Annu. Rev. Mater. Res. 2004, 34, 1–40.

13

Sargent, E. H. Colloidal quantum dot solar cells. Nature Photon. 2012, 6, 133–135.

14

Li, G. S.; Zhang, D. Q.; Yu, J. C. A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2. Environ. Sci. Technol. 2009, 43, 7079–7085.

15

Harris, C.; Kamat, P. V. Photocatalysis with CdSe nanoparticles in confined media: Mapping charge transfer events in the subpicosecond to second timescales. ACS Nano 2009, 3, 682–690.

16

Galian, R. E.; de la Guardia, M. The use of quantum dots in organic chemistry. Trends Anal. Chem. 2009, 28, 279–291.

17

Galian, R. E.; Pérez-Prieto, J. Catalytic processes activated by light. Energy Environ. Sci. 2010, 3, 1488–1498.

18

Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

19

Gao, B.; Lin, Y.; Wei, S. J.; Zeng, J.; Liao, Y.; Chen, L. G.; Goldfeld, D.; Wang, X. P.; Luo, Y.; Dong, Z. C. et al. Charge transfer and retention in directly coupled Au-CdSe nanohybrids. Nano Res. 2012, 5, 88–98.

20

Beydoun, D.; Amal, R.; Low, G.; McEvoy, S. Role of nanoparticles in photocatalysis. J. Nanopart. Res. 1999, 1, 439–458.

21

Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem. Int. Ed. 2010, 49, 4878–4897.

22

Reddy, V. R.; Reddy, N. R.; Choi, C. J. Electrical and structural properties of low-resistance Pt/Ag/Au ohmic contacts to p-type gan. Solid-State Electron. 2005, 49, 1213–1216.

23

Kamat, P. V. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 2008, 112, 18737–18753.

24

Wood, A.; Giersig, M.; Mulvaney, P. Fermi level equilibration in quantum dot–metal nanojunctions. J. Phys. Chem. B 2001, 105, 8810–8815.

25

Subramanian, V.; Wolf, E. E.; Kamat, P. V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J. Am. Chem. Soc. 2004, 126, 4943–4950.

26

Figuerola, A.; van Huis, M.; Zanella, M.; Genovese, A.; Marras, S.; Falqui, A.; Zandbergen, H. W.; Cingolani, R.; Manna, L. Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing. Nano Lett. 2010, 10, 3028–3036.

27

Zhong, H. Z.; Scholes, G. D. Shape tuning of type? CdTe-CdSe colloidal nanocrystal heterostructures through seeded growth. J. Am. Chem. Soc. 2009, 131, 9170–9171.

28

Wark, S. E.; Hsia, C. H.; Son, D. H. Effects of ion solvation and volume change of reaction on the equilibrium and morphology in cation-exchange reaction of nanocrystals. J. Am. Chem. Soc. 2008, 130, 9550–9555.

29

Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009–1012.

30

Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L. W.; Alivisatos, A. P. Spontaneous superlattice formation in nanorods through partial cation exchange. Science 2007, 317, 355–358.

31

Sadtler, B.; Demchenko, D. O.; Zheng, H. M.; Hughes, S. M.; Merkle, M. G.; Dahmen, U.; Wang, L. W.; Alivisatos, A. P. Selective facet reactivity during cation exchange in cadmium sulfide nanorods. J. Am. Chem. Soc. 2009, 131, 5285–5293.

32

Jain, P. K.; Amirav, L.; Aloni, S.; Alivisatos, A. P. Nanoheterostructure cation exchange: Anionic framework conservation. J. Am. Chem. Soc. 2010, 132, 9997–9999.

33

Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 2004, 304, 1787–1790.

34

Menagen, G.; Macdonald, J. E.; Shemesh, Y.; Popov, I.; Banin, U. Au growth on semiconductor nanorods: Photoinduced versus thermal growth mechanisms. J. Am. Chem. Soc. 2009, 131, 17406–17411.

35

O'Sullivan, C.; Gunning, R. D.; Barrett, C. A.; Singh, A.; Ryan, K. M. Size controlled gold tip growth onto Ⅱ-Ⅵ nanorods. J. Mat. Chem. 2010, 20, 7875–7880.

36
Crc Handbook of Chemistry and Physics: A Ready-reference Book of Chemical and Physical Data; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 2004.
37

Bala, T.; Singh, A.; Sanyal, A.; O'Sullivan, C.; Laffir, F.; Coughlan, C.; Ryan, K. M. Fabrication of noble metalsemiconductor hybrid nanostructures using phase transfer. Nano Res. 2013, 6, 121–130.

38

Zeng, J.; Huang, J. L.; Liu, C.; Wu, C. H.; Lin, Y.; Wang, X. P.; Zhang, S. Y.; Hou, J. G.; Xia, Y. N. Gold-based hybrid nanocrystals through heterogeneous nucleation and growth. Adv. Mat. 2010, 22, 1936–1940.

39

van Huis, M. A.; Figuerola, A.; Fang, C. M.; Béché, A.; Zandbergen, H. W.; Manna, L. Chemical transformation of Au-tipped CdS nanorods into AuS/Cd core/shell particles by electron beam irradiation. Nano Lett. 2011, 11, 4555–4561.

40

Chen, S. T.; Zhang, X. L.; Hou, X. M.; Zhou, Q.; Tan, W. H. Synthesis of CdS–Au2S–Au hybrid dendritic nanostructures. Mat. Lett. 2010, 64, 489–492.

41

Huang, C. M.; Cheng, S. H.; Jeng, U. S.; Yang, C. S.; Lo, L. W. Formation of CdSe/CdS/ZnS-Au/SiO2 dual-yolk/shell nanostructures through a trojan-type inside-out etching strategy. Nano Res. 2012, 5, 654–666.

42

Bose, R.; Thupakula, U.; Bal, J. K.; Pradhan, N. Short-lived, intense and narrow bluish-green emitting gold zinc sulfide semiconducting nanocrystals. J. Phys. Chem. C 2012, 116, 16680–16686.

43

Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mat. 2003, 15, 2854–2860.

44

Laferriere, M.; Galian, R. E.; Maurel, V.; Scaiano, J. C. Non-linear effects in the quenching of fluorescent quantum dots by nitroxyl free radicals. Chem. Commun. 2006, 257–259.

45

Jin, W. J.; Fernandez-Arguelles, M. T.; Costa-Fernandez, J. M.; Pereiro, R.; Sanz-Medel, A. Photoactivated luminescent cdse quantum dots as sensitive cyanide probes in aqueous solutions. Chem. Commun. 2005, 883–885.

46

Turro, N. J. Modern Molecular Photochemistry; University Science Books: Sausalito, CA, 1991.

47

Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer: New York, 2010.

48

Carrillo-Carrion, C.; Cardenas, S.; Simonet, B. M.; Valcarcel, M. Quantum dots luminescence enhancement due to illumination with UV/Vis light. Chem. Commun. 2009, 5214–5226.

49

Cai, Q. J.; Zhou, H.; Lu, F. Enhanced infrared response of Si base p–n diode with self-assembled Ge quantum dots by thermal annealing. Appl. Surf. Sci. 2008, 254, 3376–3379.

50

Lobo, A.; Möller, T.; Nagel, M.; Borchert, H.; Hickey, S. G.; Weller, H. Photoelectron spectroscopic investigations of chemical bonding in organically stabilized pbs nanocrystals. J. Phys. Chem. B 2005, 109, 17422–17428.

51

Santra, P. K.; Viswanatha, R.; Daniels, S. M.; Pickett, N. L.; Smith, J. M.; O'Brien, P.; Sarma, D. D. Investigation of the internal heterostructure of highly luminescent quantum dot–quantum well nanocrystals. J. Am. Chem. Soc. 2009, 131, 470–477.

52

Canava, B.; Vigneron, J.; Etcheberry, A.; Guillemoles, J. F.; Lincot, D. High resolution XPS studies of Se chemistry of a Cu(In, Ga)Se2 surface. Appl. Surf. Sci. 2002, 202, 8–14.

53
Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Division, Perkin-Elmer Corporation: Eden Prairie, NW, 1995.
54

Lam, N. S.; Wong, K. W.; Li, Q.; Zheng, Z.; Lau, W. M. Controllable size reduction of CdSe nanowires through the intermediate formation of Se-coated CdSe nanowires using acid and thermal treatment. Nanotechnology 2007, 18, 415607.

55

Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS core–shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475.

56

Morris, T.; Copeland, H.; Szulczewski, G. Synthesis and characterization of gold sulfide nanoparticles. Langmuir 2001, 18, 535–539.

57

Shao, Y.; Jin, Y. D.; Dong, S. J. Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem. Commun. 2004, 1104–1105.

58

Gomez, S.; Philippot, K.; Colliere, V.; Chaudret, B.; Senocq, F.; Lecante, P. Gold nanoparticles from self-assembled gold (Ⅰ) amine precursors. Chem. Commun. 2000, 1945–1946.

59

Mokari, T.; Aharoni, A.; Popov, I.; Banin, U. Diffusion of gold into inas nanocrystals. Angew. Chem. Int. Ed. 2006, 118, 8169–8173.

60

Khon, E.; Mereshchenko, A.; Tarnovsky, A. N.; Acharya, K.; Klinkova, A.; Hewa-Kasakarage, N. N.; Nemitz, I.; Zamkov, M. Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites. Nano Lett. 2011, 11, 1792–1799.

61

Haridas, M.; Basu, J. K.; Tiwari, A. K.; Venkatapathi, M. Photoluminescence decay rate engineering of cdse quantum dots in ensemble arrays embedded with gold nano-antennae. J. Appl. Phys. 2013, 114, 064305.

62

Saunders, A. E.; Popov, I.; Banin, U. Synthesis of hybrid CdS–Au colloidal nanostructures. J. Phys. Chem. B 2006, 110, 25421–25429.

File
12274_2015_738_MOESM1_ESM.pdf (5.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 October 2014
Revised: 27 January 2015
Accepted: 28 January 2015
Published: 09 May 2015
Issue date: July 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

We thank the Spanish Ministry of Economy and Competitiveness (MINECO Project CTQ2011-27758, CTQ2011-26507), and FGUV (R. E. G.) for financial support. The authors are also grateful to the Central Support Service in Experimental Research (SCSIE), University of Valencia, Spain for providing TEM facility.

Return