Journal Home > Volume 8 , Issue 7

Three-dimensional imaging cannot be achieved easily using previously developed localization super-resolution techniques. Here, we present a three-dimensional multimodal sub-diffraction imaging technique with spinning-disk (SD) confocal microscopy called 3D-MUSIC, which not only has all the advantages of SD confocal microscopy, such as fast imaging speed, high signal-to-noise ratio, and optical-sectioning capability, but also extends its spatial resolution limit along all three dimensions. Both axial and lateral resolution can be improved simultaneously by virtue of the blinking/fluctuating nature of modified fluorescent probes, exemplified with the quantum dots. Further, super-resolution images with dual modality can be obtained through super-resolution optical fluctuation imaging (SOFI) and bleaching/blinking-assisted localization microscopy (BaLM). Therefore, fast super-resolution imaging can be achieved with SD-SOFI by capturing only 100 frames while SD-BaLM yields high-resolution imaging.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Three-dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuating probes

Show Author's information Xuanze Chen§Zhiping Zeng§Hening WangPeng Xi( )
Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China

§ These authors contributed equally to this work.

Abstract

Three-dimensional imaging cannot be achieved easily using previously developed localization super-resolution techniques. Here, we present a three-dimensional multimodal sub-diffraction imaging technique with spinning-disk (SD) confocal microscopy called 3D-MUSIC, which not only has all the advantages of SD confocal microscopy, such as fast imaging speed, high signal-to-noise ratio, and optical-sectioning capability, but also extends its spatial resolution limit along all three dimensions. Both axial and lateral resolution can be improved simultaneously by virtue of the blinking/fluctuating nature of modified fluorescent probes, exemplified with the quantum dots. Further, super-resolution images with dual modality can be obtained through super-resolution optical fluctuation imaging (SOFI) and bleaching/blinking-assisted localization microscopy (BaLM). Therefore, fast super-resolution imaging can be achieved with SD-SOFI by capturing only 100 frames while SD-BaLM yields high-resolution imaging.

Keywords: multi-modality, super-resolution microscopy, three-dimensional, spinning-disk confocal

References(55)

1

Giloh, H.; Sedat, J. W. Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science 1982, 217, 1252–1255.

2

Baschong, W.; Suetterlin, R.; Laeng, R. H. Control of autofluorescence of archival formaldehyde-fixed, paraffinembedded tissue in confocal laser scanning microscopy (CLSM). J. Histochem. Cytochem. 2001, 49, 1565–1571.

3

Carlsson, K.; Danielsson, P. E.; Liljeborg, A.; Majlöf, L.; Lenz, R.; Åslund, N. Three-dimensional microscopy using a confocal laser scanning microscope. Opt. Lett. 1985, 10, 53–55.

4

Wang, Y.; Kuang, C.; Cai, H.; Li, S.; Liu, W.; Hao, X.; Ge, J.; Liu, X. Sub-diffraction imaging with confocal fluorescence microscopy by stochastic photobleaching. Opt. Commun. 2014, 312, 62–67.

5

Tanaami, T.; Otsuki, S.; Tomosada, N.; Kosugi, Y.; Shimizu, M.; Ishida, H. High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks. Appl. Opt. 2002, 41, 4704–4708.

6

Conchello, J. A.; Lichtman, J. W. Optical sectioning microscopy. Nat. Methods 2005, 2, 920–931.

7

Gligorijevic, B.; Purdy, K.; Elliott, D. A.; Cooper, R. A.; Roepe, P. D. Stage independent chloroquine resistance and chloroquine toxicity revealed via spinning disk confocal microscopy. Mol. Biochem. Parasitol. 2008, 159, 7–23.

8

Gligorijevic, B.; Bennett, T.; McAllister, R.; Urbach, J. S.; Roepe, P. D. Spinning disk confocal microscopy of live, intraerythrocytic malarial parasites. 2. Altered vacuolar volume regulation in drug resistant malaria. Biochemistry 2006, 45, 12411–12423.

9

Egeblad, M.; Ewald, A. J.; Askautrud, H. A.; Truitt, M. L.; Welm, B. E.; Bainbridge, E.; Peeters, G.; Krummel, M. F.; Werb, Z. Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Dis. Models & Mech. 2008, 1, 155–167.

10

Sisan, D. R.; Arevalo, R.; Graves, C.; McAllister, R.; Urbach, J. S. Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope. Biophys. J. 2006, 91, 4241–4252.

11

Cox, G.; Sheppard, C. J. Practical limits of resolution in confocal and non-linear microscopy. Microsc. Res. Techniq. 2004, 63, 18–22.

12

Martínez-Corral, M.; Andres, P.; Ojeda-Castaneda, J.; Saavedra, G. Tunable axial superresolution by annular binary filters. Application to confocal microscopy. Opt. Commun. 1995, 119, 491–498.

13

Nagorni, M.; Hell, S. W. 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100-to 150-nm resolution. J. Struct. Biol. 1998, 123, 236–247.

14

Huang, B.; Bates, M.; Zhuang, X. W. Super resolution fluorescence microscopy. Annu. Rev. Biochem. 2009, 78, 993.

15

Schermelleh, L.; Heintzmann, R.; Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 2010, 190, 165–175.

16

Hell, S. W. Far-field optical nanoscopy. Science 2007, 316, 1153–1158.

17

Hell, S. W. Toward fluorescence nanoscopy. Nat. Biotechnol. 2003, 21, 1347–1355.

18

Baddeley, D.; Cannell, M. B.; Soeller, C. Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil. Nano Res. 2011, 4, 589–598.

19

Hell, S. W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782.

20

Klar, T. A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA. 2000, 97, 8206–8210.

21

Gustafsson, M. G. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA. 2005, 102, 13081–13086.

22

Rego, E. H.; Shao, L.; Macklin, J. J.; Winoto, L.; Johansson, G. A.; Kamps-Hughes, N.; Davidson, M. W.; Gustafsson, M. G. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl. Acad. Sci. USA. 2012, 109, E135–143.

23

Shroff, H.; Galbraith, C. G.; Galbraith, J. A.; Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods. 2008, 5, 417–423.

24

Manley, S.; Gillette, J. M.; Patterson, G. H.; Shroff, H.; Hess, H. F.; Betzig, E.; Lippincott-Schwartz, J. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods. 2008, 5, 155–157.

25

Rust, M. J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–796.

26

Huang, B.; Wang, W.; Bates, M.; Zhuang, X. Threedimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 2008, 319, 810–813.

27

Burnette, D. T.; Sengupta, P.; Dai, Y.; Lippincott-Schwartz, J.; Kachar, B. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Proc. Natl. Acad. Sci. USA 2011, 108, 21081–21086.

28

Dertinger, T.; Colyer, R.; Iyer, G.; Weiss, S.; Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. USA 2009, 106, 22287–22292.

29

Dertinger, T.; Colyer, R.; Vogel, R.; Enderlein, J.; Weiss, S. Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI). Opt. Express 2010, 18, 18875–18885.

30

Pavani, S. R. P.; Thompson, M. A.; Biteen, J. S.; Lord, S. J.; Liu, N.; Twieg, R. J.; Piestun, R.; Moerner, W. Threedimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. USA 2009, 106, 2995–2999.

31

Yuen, H. P. Two-photon coherent states of the radiation field. Phys. Rev. A 1976, 13, 2226.

32

Geissbuehler, S.; Bocchio, N. L.; Dellagiacoma, C.; Berclaz, C.; Leutenegger, M.; Lasser, T. Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI). Opt. Nanosc. 2012, 1, 1–7.

33

Leutwyler, W. K.; Bürgi, S. L.; Burgl, H. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

34

Xie, R. G.; Chen, K.; Chen, X. Y.; Peng, X. G. InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: Bright, narrow-band, non-cadmium containing, and biocompatible. Nano Res. 2008, 1, 457–464.

35

Dertinger, T.; Heilemann, M.; Vogel, R.; Sauer, M.; Weiss, S. Superresolution optical fluctuation imaging with organic dyes. Angew. Chem. 2010, 122, 9631-9633.

36

Chang, H.; Zhang, M. S.; Ji, W.; Chen, J. J.; Zhang, Y. D.; Liu, B.; Lu, J. Z.; Zhang, J. L.; Xu, P. Y.; Xu, T. A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc. Natl. Acad. Sci. USA 2012, 109, 4455–4460.

37

Habuchi, S.; Ando, R.; Dedecker, P.; Verheijen, W.; Mizuno, H.; Miyawaki, A.; Hofkens, J. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. USA 2005, 102, 9511–9516.

38

Zhang, X.; Chen, X.; Zeng, Z.; Zhang, M.; Sun, Y.; Xi, P.; Peng, J.; Xu, P. Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI). ACS Nano 2015, 9, 2659–2667.

39

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

40

Kairdolf, B. A.; Smith, A. M.; Stokes, T. H.; Wang, M. D.; Young, A. N.; Nie, S. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 2013, 6, 143-162.

41

Xu, J.; Chang, J.; Yan, Q.; Dertinger, T.; Bruchez, M. P.; Weiss, S. Labeling cytosolic targets in live cells with blinking probes. J. Phys. Chem. Lett. 2013, 4, 2138–2146.

42

Guizar-Sicairos, M.; Thurman, S. T.; Fienup, J. R. Efficient subpixel image registration algorithms. Opt. Lett. 2008, 33, 156–158.

43

Geissbuehler, S.; Dellagiacoma, C.; Lasser, T. Comparison between SOFI and STORM. Biomed. Opt. Express 2011, 2, 408–420.

44

Henriques, R.; Lelek, M.; Fornasiero, E. F.; Valtorta, F.; Zimmer, C.; Mhlanga, M. M. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat. Methods 2010, 7, 339–340.

45

Maglione, M.; Sigrist, S. J. Seeing the forest tree by tree: Super-resolution light microscopy meets the neurosciences. Nat. Neurosci. 2013, 16, 790–797.

46

Dertinger, T.; Xu, J.; Naini, O. F.; Vogel, R.; Weiss, S. SOFI-based 3D superresolution sectioning with a widefield microscope. Opt. Nanosc. 2012, 1, 1–5.

47
Handbook of biological confocal microscopy; Pawley, J. B., Ed.; Springer: New York, 2010.
48

Ding, Y. C.; Xi, P.; Ren, Q. S. Hacking the optical diffraction limit: Review on recent developments of fluorescence nanoscopy. Chin. Sci. Bull. 2011, 56, 1857-1876.

49

Dedecker, P.; Mo, G. C.; Dertinger, T.; Zhang, J. Widely accessible method for superresolution fluorescence imaging of living systems. Proc. Natl. Acad. Sci. USA 2012, 109, 10909–10914.

50

Watanabe, T. M.; Fukui, S.; Jin, T.; Fujii, F.; Yanagida, T. Real-time nanoscopy by using blinking enhanced quantum dots. Biophys. J. 2010, 99, L50–L52.

51

Zeng, Z. P.; Chen, X. Z.; Wang, H. N.; Huang, N.; Shan, C. Y.; Zhang, H.; Teng, J. L.; Xi, P. Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging. Sci. Rep. 2015, 5, 8359.

52

Zhu, L.; Zhang, W.; Elnatan, D.; Huang, B. Faster STORM using compressed sensing. Nat. Methods 2012, 9, 721–723.

53

Das, S. K.; Liu, Y.; Yeom, S.; Kim, D. Y.; Richards, C. I. Single-particle fluorescence intensity fluctuations of carbon nanodots. Nano Lett. 2014, 14, 620–625.

54

Liu, Q.; Guo, B. D.; Rao, Z. Y.; Zhang, B. H.; Gong, J. R. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 2013, 13, 2436–2441.

55

Bradac, C.; Gaebel, T.; Naidoo, N.; Sellars, M.; Twamley, J.; Brown, L.; Barnard, A.; Plakhotnik, T.; Zvyagin, A.; Rabeau, J. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 2010, 5, 345–349.

Video
12274_2015_736_MOESM2_ESM.avi
12274_2015_736_MOESM3_ESM.avi
File
12274_2015_736_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 September 2014
Revised: 19 October 2014
Accepted: 28 January 2015
Published: 05 May 2015
Issue date: July 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by the National Instrumentation Program (No. 2013YQ03065102), the National Basic Research Program of China (Nos. 2011CB809101 and 2010CB933901), and the National Natural Science Foundation of China (Nos. 61178076, 31327901 and 61475010).

Return