AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Three-dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuating probes

Xuanze Chen§Zhiping Zeng§Hening WangPeng Xi( )
Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Three-dimensional imaging cannot be achieved easily using previously developed localization super-resolution techniques. Here, we present a three-dimensional multimodal sub-diffraction imaging technique with spinning-disk (SD) confocal microscopy called 3D-MUSIC, which not only has all the advantages of SD confocal microscopy, such as fast imaging speed, high signal-to-noise ratio, and optical-sectioning capability, but also extends its spatial resolution limit along all three dimensions. Both axial and lateral resolution can be improved simultaneously by virtue of the blinking/fluctuating nature of modified fluorescent probes, exemplified with the quantum dots. Further, super-resolution images with dual modality can be obtained through super-resolution optical fluctuation imaging (SOFI) and bleaching/blinking-assisted localization microscopy (BaLM). Therefore, fast super-resolution imaging can be achieved with SD-SOFI by capturing only 100 frames while SD-BaLM yields high-resolution imaging.

Electronic Supplementary Material

Video
12274_2015_736_MOESM2_ESM.avi
12274_2015_736_MOESM3_ESM.avi
Download File(s)
12274_2015_736_MOESM1_ESM.pdf (1.1 MB)

References

1

Giloh, H.; Sedat, J. W. Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science 1982, 217, 1252–1255.

2

Baschong, W.; Suetterlin, R.; Laeng, R. H. Control of autofluorescence of archival formaldehyde-fixed, paraffinembedded tissue in confocal laser scanning microscopy (CLSM). J. Histochem. Cytochem. 2001, 49, 1565–1571.

3

Carlsson, K.; Danielsson, P. E.; Liljeborg, A.; Majlöf, L.; Lenz, R.; Åslund, N. Three-dimensional microscopy using a confocal laser scanning microscope. Opt. Lett. 1985, 10, 53–55.

4

Wang, Y.; Kuang, C.; Cai, H.; Li, S.; Liu, W.; Hao, X.; Ge, J.; Liu, X. Sub-diffraction imaging with confocal fluorescence microscopy by stochastic photobleaching. Opt. Commun. 2014, 312, 62–67.

5

Tanaami, T.; Otsuki, S.; Tomosada, N.; Kosugi, Y.; Shimizu, M.; Ishida, H. High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks. Appl. Opt. 2002, 41, 4704–4708.

6

Conchello, J. A.; Lichtman, J. W. Optical sectioning microscopy. Nat. Methods 2005, 2, 920–931.

7

Gligorijevic, B.; Purdy, K.; Elliott, D. A.; Cooper, R. A.; Roepe, P. D. Stage independent chloroquine resistance and chloroquine toxicity revealed via spinning disk confocal microscopy. Mol. Biochem. Parasitol. 2008, 159, 7–23.

8

Gligorijevic, B.; Bennett, T.; McAllister, R.; Urbach, J. S.; Roepe, P. D. Spinning disk confocal microscopy of live, intraerythrocytic malarial parasites. 2. Altered vacuolar volume regulation in drug resistant malaria. Biochemistry 2006, 45, 12411–12423.

9

Egeblad, M.; Ewald, A. J.; Askautrud, H. A.; Truitt, M. L.; Welm, B. E.; Bainbridge, E.; Peeters, G.; Krummel, M. F.; Werb, Z. Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Dis. Models & Mech. 2008, 1, 155–167.

10

Sisan, D. R.; Arevalo, R.; Graves, C.; McAllister, R.; Urbach, J. S. Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope. Biophys. J. 2006, 91, 4241–4252.

11

Cox, G.; Sheppard, C. J. Practical limits of resolution in confocal and non-linear microscopy. Microsc. Res. Techniq. 2004, 63, 18–22.

12

Martínez-Corral, M.; Andres, P.; Ojeda-Castaneda, J.; Saavedra, G. Tunable axial superresolution by annular binary filters. Application to confocal microscopy. Opt. Commun. 1995, 119, 491–498.

13

Nagorni, M.; Hell, S. W. 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100-to 150-nm resolution. J. Struct. Biol. 1998, 123, 236–247.

14

Huang, B.; Bates, M.; Zhuang, X. W. Super resolution fluorescence microscopy. Annu. Rev. Biochem. 2009, 78, 993.

15

Schermelleh, L.; Heintzmann, R.; Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 2010, 190, 165–175.

16

Hell, S. W. Far-field optical nanoscopy. Science 2007, 316, 1153–1158.

17

Hell, S. W. Toward fluorescence nanoscopy. Nat. Biotechnol. 2003, 21, 1347–1355.

18

Baddeley, D.; Cannell, M. B.; Soeller, C. Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil. Nano Res. 2011, 4, 589–598.

19

Hell, S. W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782.

20

Klar, T. A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA. 2000, 97, 8206–8210.

21

Gustafsson, M. G. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA. 2005, 102, 13081–13086.

22

Rego, E. H.; Shao, L.; Macklin, J. J.; Winoto, L.; Johansson, G. A.; Kamps-Hughes, N.; Davidson, M. W.; Gustafsson, M. G. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl. Acad. Sci. USA. 2012, 109, E135–143.

23

Shroff, H.; Galbraith, C. G.; Galbraith, J. A.; Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods. 2008, 5, 417–423.

24

Manley, S.; Gillette, J. M.; Patterson, G. H.; Shroff, H.; Hess, H. F.; Betzig, E.; Lippincott-Schwartz, J. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods. 2008, 5, 155–157.

25

Rust, M. J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–796.

26

Huang, B.; Wang, W.; Bates, M.; Zhuang, X. Threedimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 2008, 319, 810–813.

27

Burnette, D. T.; Sengupta, P.; Dai, Y.; Lippincott-Schwartz, J.; Kachar, B. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Proc. Natl. Acad. Sci. USA 2011, 108, 21081–21086.

28

Dertinger, T.; Colyer, R.; Iyer, G.; Weiss, S.; Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. USA 2009, 106, 22287–22292.

29

Dertinger, T.; Colyer, R.; Vogel, R.; Enderlein, J.; Weiss, S. Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI). Opt. Express 2010, 18, 18875–18885.

30

Pavani, S. R. P.; Thompson, M. A.; Biteen, J. S.; Lord, S. J.; Liu, N.; Twieg, R. J.; Piestun, R.; Moerner, W. Threedimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. USA 2009, 106, 2995–2999.

31

Yuen, H. P. Two-photon coherent states of the radiation field. Phys. Rev. A 1976, 13, 2226.

32

Geissbuehler, S.; Bocchio, N. L.; Dellagiacoma, C.; Berclaz, C.; Leutenegger, M.; Lasser, T. Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI). Opt. Nanosc. 2012, 1, 1–7.

33

Leutwyler, W. K.; Bürgi, S. L.; Burgl, H. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

34

Xie, R. G.; Chen, K.; Chen, X. Y.; Peng, X. G. InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: Bright, narrow-band, non-cadmium containing, and biocompatible. Nano Res. 2008, 1, 457–464.

35

Dertinger, T.; Heilemann, M.; Vogel, R.; Sauer, M.; Weiss, S. Superresolution optical fluctuation imaging with organic dyes. Angew. Chem. 2010, 122, 9631-9633.

36

Chang, H.; Zhang, M. S.; Ji, W.; Chen, J. J.; Zhang, Y. D.; Liu, B.; Lu, J. Z.; Zhang, J. L.; Xu, P. Y.; Xu, T. A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc. Natl. Acad. Sci. USA 2012, 109, 4455–4460.

37

Habuchi, S.; Ando, R.; Dedecker, P.; Verheijen, W.; Mizuno, H.; Miyawaki, A.; Hofkens, J. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. USA 2005, 102, 9511–9516.

38

Zhang, X.; Chen, X.; Zeng, Z.; Zhang, M.; Sun, Y.; Xi, P.; Peng, J.; Xu, P. Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI). ACS Nano 2015, 9, 2659–2667.

39

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

40

Kairdolf, B. A.; Smith, A. M.; Stokes, T. H.; Wang, M. D.; Young, A. N.; Nie, S. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 2013, 6, 143-162.

41

Xu, J.; Chang, J.; Yan, Q.; Dertinger, T.; Bruchez, M. P.; Weiss, S. Labeling cytosolic targets in live cells with blinking probes. J. Phys. Chem. Lett. 2013, 4, 2138–2146.

42

Guizar-Sicairos, M.; Thurman, S. T.; Fienup, J. R. Efficient subpixel image registration algorithms. Opt. Lett. 2008, 33, 156–158.

43

Geissbuehler, S.; Dellagiacoma, C.; Lasser, T. Comparison between SOFI and STORM. Biomed. Opt. Express 2011, 2, 408–420.

44

Henriques, R.; Lelek, M.; Fornasiero, E. F.; Valtorta, F.; Zimmer, C.; Mhlanga, M. M. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat. Methods 2010, 7, 339–340.

45

Maglione, M.; Sigrist, S. J. Seeing the forest tree by tree: Super-resolution light microscopy meets the neurosciences. Nat. Neurosci. 2013, 16, 790–797.

46

Dertinger, T.; Xu, J.; Naini, O. F.; Vogel, R.; Weiss, S. SOFI-based 3D superresolution sectioning with a widefield microscope. Opt. Nanosc. 2012, 1, 1–5.

47
Handbook of biological confocal microscopy; Pawley, J. B., Ed.; Springer: New York, 2010.
48

Ding, Y. C.; Xi, P.; Ren, Q. S. Hacking the optical diffraction limit: Review on recent developments of fluorescence nanoscopy. Chin. Sci. Bull. 2011, 56, 1857-1876.

49

Dedecker, P.; Mo, G. C.; Dertinger, T.; Zhang, J. Widely accessible method for superresolution fluorescence imaging of living systems. Proc. Natl. Acad. Sci. USA 2012, 109, 10909–10914.

50

Watanabe, T. M.; Fukui, S.; Jin, T.; Fujii, F.; Yanagida, T. Real-time nanoscopy by using blinking enhanced quantum dots. Biophys. J. 2010, 99, L50–L52.

51

Zeng, Z. P.; Chen, X. Z.; Wang, H. N.; Huang, N.; Shan, C. Y.; Zhang, H.; Teng, J. L.; Xi, P. Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging. Sci. Rep. 2015, 5, 8359.

52

Zhu, L.; Zhang, W.; Elnatan, D.; Huang, B. Faster STORM using compressed sensing. Nat. Methods 2012, 9, 721–723.

53

Das, S. K.; Liu, Y.; Yeom, S.; Kim, D. Y.; Richards, C. I. Single-particle fluorescence intensity fluctuations of carbon nanodots. Nano Lett. 2014, 14, 620–625.

54

Liu, Q.; Guo, B. D.; Rao, Z. Y.; Zhang, B. H.; Gong, J. R. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 2013, 13, 2436–2441.

55

Bradac, C.; Gaebel, T.; Naidoo, N.; Sellars, M.; Twamley, J.; Brown, L.; Barnard, A.; Plakhotnik, T.; Zvyagin, A.; Rabeau, J. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 2010, 5, 345–349.

Nano Research
Pages 2251-2260
Cite this article:
Chen X, Zeng Z, Wang H, et al. Three-dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuating probes. Nano Research, 2015, 8(7): 2251-2260. https://doi.org/10.1007/s12274-015-0736-8

712

Views

29

Crossref

N/A

Web of Science

35

Scopus

1

CSCD

Altmetrics

Received: 03 September 2014
Revised: 19 October 2014
Accepted: 28 January 2015
Published: 05 May 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return