AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Scalable nanomanufacturing of surfactant-free carbon nanotube inks for spray coatings with high conductivity

Colin Preston1Da Song1Jaiqi Dai1Zois Tsinas2John Bavier3John Cumings1Vince Ballarotto3Liangbing Hu1( )
Department of Materials Science and EngineeringUniversity of Maryland College ParkCollege ParkMaryland20742USA
Department of BioengineeringUniversity of Maryland College ParkCollege ParkMaryland20742USA
Laboratory for Physical Sciences8050 Greenmead DriveCollege ParkMaryland20740USA
Show Author Information

Graphical Abstract

Abstract

Spray-coated carbon nanotube films offer a simple and printable solution for fabricating low cost, lightweight, and flexible thin-film electronics. However, current nanotube spray inks require either a disruptive surfactant or destructive surface functionalization to stabilize dispersions at the cost of the electrical properties of the deposited film. We demonstrate that high-purity few-walled carbon nanotubes may be stabilized in isopropanol after surface functionalization and that optimizing the ink stability dramatically enhances the conductivity of subsequent spray-coated thin films. We consequently report a surfactant-free carbon nanotube ink for spray-coated thin films with conductivities reaching 2, 100 S/cm. Zeta-potential measurements, used to quantify the nanotube ink dispersion quality, directly demonstrate a positive correlation with the spraycoated film conductivity, which is the key metric for high-performance printed electronics.

Electronic Supplementary Material

Download File(s)
12274_2015_735_MOESM1_ESM.pdf (2 MB)

References

1

Scarselli, M.; Castrucci, P.; Crescenzi, M. Electronic and optoelectronic nano-devices based on carbon nanotubes. J. Phys: Condens. Mat. 2012, 24, 313202.

2

Bandaru, P. R. Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechno. 2007, 7, 1239–1267.

3

Hu, L. B.; Hecht, D. S.; Grüner, G. Carbon nanotube thin films: Fabrication, properties, and applications. Chem. Rev. 2010, 110, 5790–5844.

4

Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

5
Cui, Z.; Zhao, J.; Zhang, T. Printed carbon nanotube devices and their applications. In 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Kyoto, Japan, March 5–8, 2012; IEEE: Danvers, MA, 2012.https://doi.org/10.1109/NEMS.2012.6196705
6

Hu, L.; Hecht, D. S.; Gruner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 2004, 4, 2513–2517.

7

Martinez, M.; Callejas, M.; Benito, A.; Cochet, M.; Seeger, T.; Ansón, A.; Schreiber, J.; Gordon, C.; Marhic, C.; Chauvet, O. et al. Sensitivity of single wall carbon nanotubes to oxidative processing: Structural modification, intercalation and functionalisation. Carbon 2003, 41, 2247–2256.

8

Bower, C.; Kleinhammes, A.; Wu, Y.; Zhou, O. Intercalation and partial exfoliation of single-walled carbon nanotubes by nitric acid. Chem. Phys. Lett. 1998, 288, 481–486.

9

Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46, 833–840.

10

Geng, H. Z.; Kim, K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 2007, 129, 7758–7759.

11

Hersam, M. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394.

12

Yu, A.; Su, C. C. L.; Roes, I.; Fan, B.; Haddon, R. C. Gramscale preparation of surfactant-free, carboxylic acid groups functionalized, individual single-walled carbon nanotubes in aqueous solution. Langmuir 2010, 26, 1221–1225.

13

Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829.

14

Majumder, M.; Rendall, C.; Li, M.; Behabtu, N.; Eukel, J. A.; Hauge, R. H.; Schmidt, H. K.; Pasquali, M. Insights into the physics of spray coating of SWNT films. Chem. Eng. Sci. 2010, 65, 2000–2008.

15

Lee, S. W.; Gallant, B. M.; Lee, Y.; Yoshida, N.; Kim, D.; Tamada, Y.; S. Noda, S.; Yamada, A.; Shao-Horn, Y. Selfstanding positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries. Energy Environ. Sci. 2012, 5, 5437–5444.

16

Feng, Y.; Ju, X.; Feng, W.; Zhang, H.; Cheng, Y.; Liu, J.; Fujii, A.; Ozaki, M.; Yoshino, K. Organic solar cells using few-walled carbon nanotubes electrode controlled by the balance between sheet resistance and the transparency. Appl. Phys. Lett. 2009, 94, 123302.

17

Zhao. B.; Zhang, L.; Liang, Y. X.; Qiu, H. X.; Yang, J. H. Efficient growth of millimeter-long few-walled carbon nanotube forests and their oil sorption. Appl. Phys. A 2012, 108, 351–355.

18

Qian, C.; Qi, H.; Gao, B.; Cheng, Y.; Qiu, Q.; Qin, L. C.; Zhou, O.; Liu, J. Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property. J. Nanosci. Nanotechnol. 2006, 6, 1346–1349.

19

Kumar, N. A.; Jeon, I. Y.; Sohn, G. J.; Jain, R.; Kumar, S.; Baek, J. B. Sponge behaviors of functionalized few-walled carbon nanotubes. ACS Nano 2011, 5, 2324–2331.

20

Di, J. T.; Hu, D. M.; Chen, H. Y.; Yong, Z. Z.; Chen, M. H.; Feng, Z. H.; Zhu, Y. T.; Li, Q. W. Ultrastrong, foldable, and highly conductive carbon nanotube film. ACS Nano 2012, 6, 5457–5464.

21

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47.

22

Hilding, J.; Grulke, E. A.; Zhang, Z. G.; Lockwood, F. Dispersion of carbon nanotubes in liquids. J. Disper. Sci. Technol. 2003, 24, 1–41.

23

Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater. 2005, 17, 17–29.

24

Hou, Y.; Tang, J.; Zhang, H. B.; Qian, C.; Feng, Y. Y.; Liu, J. Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites. ACS Nano 2009, 3, 1057–1062.

25
Numata, H.; Ihara, K.; Saito, T.; Endoh, H.; Nihey, F. Electrical property of printed transistors fabricated with various types of carbon nanotube ink. In 2012 12th IEEE International Conference on Nanotechnology, Birmingham, UK, August 20–23, 2012; IEEE: Danvers, MA, 2012.https://doi.org/10.1109/NANO.2012.6322109
26

Feng, Y.; Zhang, H.; Hou, Y.; McNicholas, T. P.; Yuan, D.; Yang, S.; Ding, L.; Feng, W.; Liu, J. Room temperature purification of few-walled carbon nanotubes with high yield. ACS Nano 2008, 2, 1634–1638.

27

Panchakarla, L S.; Govindaraj, A. Covalent and non-covalent functionalization and solubilization of double-walled carbon nanotubes in nonpolar and aqueous media. J. Chem. Sci. 2008, 120, 607–611.

28

Yudianti, R.; Onggo, H.; Sudirman; Saito, Y.; Iwata, T.; Azuma, J. I. Analysis of functional group sited on multiwall carbon nanotube surface. Open Mater. Sci. J. 2011, 5, 242–247.

29

White, B.; Banerjee, S.; O'Brien, S.; Turro, N. J.; Herman, I. P. Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J. Phys. Chem. C 2007, 111, 13684–13690.

30

Huang, C.; Grobert, N.; Watt, A. A. R.; Johnston, C.; Crossley, A.; Young, N. P.; Grant, P. S. Layer-by-layer spray deposition and unzipping of single-wall carbon nanotube-based thin film electrodes for electrochemical capacitors. Carbon 2013, 61, 525–536.

31

Lee, B. J.; Shin, E. C.; Jeong, G. H. Length-controlled fewwalled carbon nanotubes and their effect on the electrical property of flexible transparent conductive films. Appl. Phys. A 2012, 107, 843–848.

32

Qi, H.; Qian, C.; Liu, J. Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanol mixture. Chem. Mater. 2006, 18, 5691–5695.

Nano Research
Pages 2242-2250
Cite this article:
Preston C, Song D, Dai J, et al. Scalable nanomanufacturing of surfactant-free carbon nanotube inks for spray coatings with high conductivity. Nano Research, 2015, 8(7): 2242-2250. https://doi.org/10.1007/s12274-015-0735-9

747

Views

26

Crossref

N/A

Web of Science

28

Scopus

5

CSCD

Altmetrics

Received: 11 September 2014
Revised: 12 January 2015
Accepted: 21 January 2015
Published: 12 June 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return