AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Localized magnetization reversal processes in cobalt nanorods with different aspect ratios

Marc Pousthomis1Evangelia Anagnostopoulou1Ioannis Panagiotopoulos2,3Rym Boubekri1Weiqing Fang2Frédéric Ott2( )Kahina Aït Atmane4Jean-Yves Piquemal4Lise-Marie Lacroix1Guillaume Viau1( )
LPCNOUMR 5215 INSA CNRS UPSUniversité de Toulouse, 135 av de Rangueil31077Toulouse Cedex 4, France
Laboratoire Léon BrillouinCEA/CNRS UMR12IRAMISCEA-Saclay91191Gif sur Yvette, France
Department of Materials Science and EngineeringUniversity of IoanninaIoannina45110Greece
Sorbonne Paris CitéITODYSCNRS UMR 7086Université Paris Diderot, 15 rue J.-A. de Baïf75205Paris Cedex 13, France
Show Author Information

Graphical Abstract

Abstract

We present results of the synthesis of cobalt nanorods using the polyol process and the mechanism of magnetization reversal. We show that the nucleation step is significantly dependent on the nature of the ruthenium chloride used as the nucleating agent. This allows varying the diameter and aspect ratio of the cobalt nanorods independently. Co nanorods with aspect ratio, mean diameter, and mean length in the ranges ARm = 3–16, Dm = 7–25 nm, and Lm = 30–300 nm, respectively, were produced using this method. X-ray diffraction and electron microscopy showed that a strong discrepancy between the structural coherence and morphological aspect ratio can exist because of stacking faults. The coercivity of assemblies of different nanorods was systematically measured, and the highest values were obtained for the smallest diameter and the largest structural coherence length. Micromagnetic simulations were performed to account for the dependence of the coercive field on the diameter. An important observation is that simple coherent magnetization rotation models do not apply to these magnetic nano-objects. Even for very small diameters (Dm = 5–10 nm) well below the theoretical coherent diameter Dcoh(Co) = 24 nm, we observed inhomogeneous reversal modes dominated by nucleation at the rod edges or at structural defects such as stacking faults. We conclude that, in order to produce high-coercivity materials based on nanowires, moderate aspect ratios of 5–10 are sufficient for providing a structural coherence similar to the morphological aspect ratio. Thus, the first priority should be to avoid the formation of stacking faults within the Co nanowires.

References

1

Krahne, R.; Morello, G.; Figuerola, A.; George, C.; Deka, S.; Manna, L. Physical properties of elongated inorganic nanoparticles. Phys. Rep. 2011, 501, 75–221.

2

Liakakos, N.; Blon, T.; Achkar, C.; Vilar, V.; Cormary, B.; Tan, R. P.; Benamara, O.; Chaboussant, G.; Ott, F.; Warot-Fonrose, B. et al. Solution epitaxial growth of cobalt nanowires on crystalline substrates for data storage densities beyond 1 Tbit/in2. Nano Lett. 2014, 14, 3481–3486.

3

Schrittwieser, S.; Ludwig, F.; Dieckhoff, J.; Soulantica, K.; Viau, G.; Lacroix, L. M.; Lentijo, S. M.; Boubekri, R.; Maynadié, J.; Huetten, A. et al. Modeling and development of a biosensor based on optical relaxation measurements of hybrid nanoparticles. ACS Nano 2012, 6, 791–801.

4

Maurer, T.; Ott, F.; Chaboussant, G.; Soumare, Y.; Piquemal, J. Y.; Viau, G. Magnetic nanowires as permanent magnet materials. Appl. Phys. Lett. 2007, 91, 172501.

5

Gandha, K.; Elkins, K.; Poudyal, N.; Liu, X. B.; Liu, J. P. High energy product developed from cobalt nanowires. Sci. Rep. 2014, 4, 5345.

6

Harris, V. G.; Chen, Y.; Yang, A.; Yoon, S.; Chen, Z.; Geiler, A. L.; Gao, J.; Chinnasamy, C. N.; Lewis, L. H.; Vittoria, C. et al. High coercivity cobalt carbide nanoparticles processed via polyol reaction: A new permanent magnet material. J. Phys. D: Appl. Phys. 2010, 43, 165003.

7

Poudyal, N.; Liu, J. P. Advances in nanostructured permanent magnets research. J. Phys. D: Appl. Phys. 2013, 46, 043001.

8

Balasubramanian, B.; Mukherjee, P.; Skomski, R.; Manchanda, P.; Das, B.; Sellmyer, D. J. Magnetic nanostructuring and overcoming brown's paradox to realize extraordinary hightemperature energy products. Sci. Rep. 2014, 4, 6265.

9

Soumare, Y.; Garcia, C.; Maurer, T.; Chaboussant, G.; Ott, F.; Fiévet, F.; Piquemal, J. Y.; Viau, G. Kinetically controlled synthesis of hexagonally close-packed cobalt nanorods with high magnetic coercivity. Adv. Funct. Mater. 2009, 19, 1971–1977.

10

Soulantica, K.; Wetz, F.; Maynadié, J.; Falqui, A.; Tan, R. P.; Blon, T.; Chaudret, B.; Respaud, M. Magnetism of singlecrystalline Co Nanorods. Appl. Phys. Lett. 2009, 95, 152504.

11

Fang, W. Q.; Panagiotopoulos, I.; Ott, F.; Boué, F.; Ait-Atmane, K.; Piquemal, J. Y.; Viau, G.; Dalmas, F. Optimization of the magnetic properties of aligned Co nanowires/polymer composites for the fabrication of permanent magnets. J. Nanoparticle Res. 2014, 16, 2265.

12

Skomski, R.; Zeng, H.; Zheng, M.; Sellmyer, D. J. Magnetic localization in transition-metal nanowires. Phys. Rev. B 2000, 62, 3900.

13

Paulus, P. M.; Luis, F.; Kröll, M.; Schmid, G.; De Jongh, L. J. Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires. J. Magn. Magn. Mater. 2001, 224, 180–196.

14

Bran, C.; Ivanov, Y. P.; Trabada, D. G.; Tomkowicz, J.; del Real, R. P.; Chubykalo-Fesenko, O.; Vazquez, M. Structural dependence of magnetic properties in Co-based nanowires: Experiments and micromagnetic simulations. IEEE Trans. Magn. 2013, 49, 4491–4497.

15

Schio, P.; Vidal, F.; Zheng, Y.; Milano, J.; Fonda, E.; Demaille, D.; Vodungbo, B.; Varalda, J.; de Oliveira, A. J. A.; Etgens, V. H. Magnetic response of cobalt nanowires with diameter below 5 nm. Phys. Rev. B 2010, 82, 094436.

16

Ciuculescu, D.; Dumestre, F.; Comesaña-Hermo, M.; Chaudret, B.; Spasova, M.; Farle, M.; Amiens, C. Single-crystalline Co nanowires: Synthesis, thermal stability, and carbon coating. Chem. Mater. 2009, 21, 3987–3995.

17

Liakakos, N.; Cormary, B.; Li, X.; Lecante, P.; Respaud, M.; Maron, L.; Falqui, A.; Genovese, A.; Vendier, L.; Koïnis, S. et al. The big impact of a small detail: Cobalt nanocrystal polymorphism as a result of precursor addition rate during stock solution preparation. J. Am. Chem. Soc. 2012, 134, 17922–17931.

18

Atmane, K. A.; Michel, C.; Piquemal, J. Y.; Sautet, P.; Beaunier, P.; Giraud, M.; Sicard, M.; Nowak, S.; Losno, R.; Viau, G. Control of the anisotropic shape of cobalt nanorods in the liquid phase: From experiment to theory… and back. Nanoscale 2014, 6, 2682–2692.

19

Viau, G.; Garcia, C.; Maurer, T.; Chaboussant, G.; Ott, F.; Soumare, Y.; Piquemal, J. Y. Highly crystalline cobalt nanowires with high coercivity prepared by soft chemistry. Phys. Status Solidi A 2009, 206, 663–666.

20

Aharoni, A. Introduction to the Theory of Ferromagnetism, 2nd ed.; Oxford University Press: London, 2000.

21

Ott, F.; Maurer, T.; Chaboussant, G.; Soumare, Y.; Piquemal, J. Y.; Viau, G. Effects of the shape of elongated magnetic particles on the coercive field. J. Appl. Phys. 2009, 105, 013915.

22

Panagiotopoulos, I.; Fang, W.; Aït-Atmane, K.; Piquemal, J. Y.; Viau, G.; Dalmas, F.; Boué, F.; Ott, F. Low dipolar interactions in dense aggregates of aligned magnetic nanowires. J. Appl. Phys. 2013, 114, 233909.

23

Vidal, F.; Zheng, Y.; Schio, P.; Bonilla, F. J.; Barturen, M.; Milano, J.; Demaille, D.; Fonda, E.; de Oliveira, A. J. A.; Etgens, V. H. Mechanism of localization of the magnetization reversal in 3 nm wide Co nanowires. Phys. Rev. Lett. 2012, 109, 117205.

24

Panagiotopoulos, I.; Fang, W.; Ott, F.; Boué, F.; Aït-Atmane, K.; Piquemal, J. Y.; Viau, G. Packing fraction dependence of the coercivity and the energy product in nanowire based permanent magnets. J. Appl. Phys. 2013, 114, 143902.

25

Rueff, J. M.; Masciocchi, N.; Rabu, P.; Sironi, A.; Skoulios, A. Synthesis, structure and magnetism of homologous series of polycrystalline cobalt alkane mono-and dicarboxylate Soaps. Chem. —Eur. J. 2002, 8, 1813–1820.

26

Chakroune, N.; Viau, G.; Ricolleau, C.; Fiévet-Vincent, F.; Fiévet, F. Cobalt-based anisotropic particles prepared by the polyol process. J. Mater. Chem. 2003, 13, 312–318.

27

Gandha, K.; Poudyal, N.; Zhang, Q.; Liu, J. P. Effect of RuCl3 on morphology and magnetic properties of CoNi nanowires. IEEE Trans. Magn. 2013, 49, 3273–3276.

28

Maurer, T.; Zighem, F.; Ott, F.; Chaboussant, G.; André, G.; Soumare, Y.; Piquemal, J. Y.; Viau, G.; Gatel, C. Exchange bias in Co/CoO core-shell nanowires: Role of antiferromagnetic superparamagnetic fluctuations. Phys. Rev. B 2009, 80, 064427.

29

Zeng, H.; Skomski, R.; Menon, L.; Liu, Y.; Bandyopadhyay, S.; Sellmyer, D. J. Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays. Phys. Rev. B 2002, 65, 134426.

30

Skomski, R.; Coey, J. M. D. Permanent Magnetism; Institute of Physics Pub. : Bristol, UK, and Philadelphia, PA, 1999.

31

Fischbacher, T.; Franchin, M.; Bordignon, G.; Fangohr, H. A systematic approach to multiphysics extensions of finiteelement-based micromagnetic simulations: Nmag. IEEE Trans. Magn. 2007, 43, 2896–2898.

Nano Research
Pages 2231-2241
Cite this article:
Pousthomis M, Anagnostopoulou E, Panagiotopoulos I, et al. Localized magnetization reversal processes in cobalt nanorods with different aspect ratios. Nano Research, 2015, 8(7): 2231-2241. https://doi.org/10.1007/s12274-015-0734-x

775

Views

49

Crossref

N/A

Web of Science

52

Scopus

4

CSCD

Altmetrics

Received: 19 September 2014
Revised: 16 January 2015
Accepted: 20 January 2015
Published: 09 May 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return