Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Cl-functionalized scanning tunneling microscopy (STM) tips are fabricated by modifying a tungsten STM tip in situ on islands of ultrathin NaCl(100) films on Au(111) surfaces. The functionalized tips are used to achieve clear atomicresolution imaging of NaCl(100) islands. In comparison with bare metal tips, the chemically modified tips yield drastically enhanced spatial resolution as well as contrast reversal in STM topographs, implying that Na atoms, rather than Cl atoms, are imaged as protrusions. STM simulations based on a Green's function formalism reveal that the experimentally observed contrast reversal in the STM topographs is due to the highly localized character of the Cl-pz states at the tip apex. An additional remarkable characteristic of the modified tips is that in dI/dV maps, a Na atom appears as a ring with a diameter that depends crucially on the tip-sample distance.
Gross, L.; Moll, N.; Mohn, F.; Curioni, A.; Meyer, G.; Hanke, F.; Persson, M. High-resolution molecular orbital imaging using a p-wave STM tip. Phys. Rev. Lett. 2011, 107, 086101.
Martínez, J. I.; Abad, E.; González, C.; Flores, F.; Ortega, J. Improvement of scanning tunneling microscopy resolution with H-sensitized tips. Phys. Rev. Lett. 2012, 108, 246102.
Krasnikov, S. A.; Lübben, O.; Murphy, B. E.; Bozhko, S. I.; Chaika, A. N.; Sergeeva, N. N.; Bulfin, B.; Shvets, I. V. Writing with atoms: Oxygen adatoms on the MoO2/Mo(110) surface. Nano Res. 2013, 6, 929–937.
Lingley, Z.; Mahalingam, K.; Lu, S. Y.; Brown, G. J.; Madhukar, A. Nanocrystal-semiconductor interface: Atomicresolution cross-sectional transmission electron microscope study of lead sulfide nanocrystal quantum dots on crystalline silicon. Nano Res. 2014, 7, 219–227.
Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 2009, 325, 1110–1114.
Zhao, R. Q.; Zhang, Y. F.; Gao, T.; Gao, Y. B.; Liu, N.; Fu, L.; Liu, Z. F. Scanning tunneling microscope observations of non-AB stacking of graphene on Ni films. Nano Res. 2011, 4, 712–721.
Li, Z.; Chen, H. Y. T.; Schouteden, K.; Lauwaet, K.; Giordano, L.; Trioni, M. I.; Janssens, E.; Iancu, V.; Van Haesendonck, C.; Lievens, P. et al. Self-doping of ultrathin insulating films by transition metal atoms. Phys. Rev. Lett. 2014, 112, 026102.
Repp, J.; Meyer, G.; Stojković, S. M.; Gourdon, A.; Joachim, C. Molecules on insulating films: Scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 2005, 94, 026803.
Repp, J.; Meyer, G.; Paavilainen, S.; Olsson, F. E.; Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 2006, 312, 1196–1199.
Lin, X.; Nilius, N.; Freund, H. J.; Walter, M.; Frondelius, P.; Honkala, K.; Häkkinen, H. Quantum well states in twodimensional gold clusters on MgO thin films. Phys. Rev. Lett. 2009, 102, 206801.
Repp, J.; Meyer, G.; Olsson, F. E.; Persson, M. Controlling the charge state of individual gold adatoms. Science 2004, 305, 493–495.
Olsson, F. E.; Paavilainen, S.; Persson, M.; Repp, J.; Meyer, G. Multiple charge states of Ag atoms on ultrathin NaCl films. Phys. Rev. Lett. 2007, 98, 176803.
Loth, S.; Lutz, C. P.; Heinrich, A. J. Spin-polarized spin excitation spectroscopy. New J. Phys. 2010, 12, 125021.
Novaes, F. D.; Lorente, N.; Gauyacq, J. P. Quenching of magnetic excitations in single adsorbates at surfaces: Mn on CuN/Cu(100). Phys. Rev. B 2010, 82, 155401.
Loth, S.; Baumann, S.; Lutz, C. P.; Eigler, D. M.; Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 2012, 335, 196–199.
Hebenstreit, W.; Redinger, J.; Horozova, Z.; Schmid, M.; Podloucky, R.; Varga, P. Atomic resolution by STM on ultra-thin films of alkali halides: Experiment and local density calculations. Surf. Sci. 1999, 424, 321–328.
Repp, J.; Fölsch, S.; Meyer, G.; Rieder, K. H. Ionic films on vicinal metal surfaces: Enhanced binding due to charge modulation. Phys. Rev. Lett. 2001, 86, 252–255.
Repp, J.; Meyer, G.; Rieder, K. H. Snell's law for surface electrons: Refraction of an electron gas imaged in real space. Phys. Rev. Lett. 2004, 92, 036803.
Repp, J.; Meyer, G.; Paavilainen, S.; Olsson, F. E.; Persson, M. Scanning tunneling spectroscopy of Cl vacancies in NaCl films: Strong electron-phonon coupling in double-barrier tunneling junctions. Phys. Rev. Lett. 2005, 95, 225503.
Lauwaet, K.; Schouteden, K.; Janssens, E.; Van Haesendonck, C.; Lievens, P. Dependence of the NaCl/Au(111) interface state on the thickness of the NaCl layer. J. Phys. : Condens. Matter. 2012, 24, 475507.
Olsson, F. E.; Persson, M.; Repp, J.; Meyer, G. Scanning tunneling microscopy and spectroscopy of NaCl overlayers on the stepped Cu(311) surface: Experimental and theoretical study. Phys. Rev. B 2005, 71, 075419.
Lauwaet, K.; Schouteden, K.; Janssens, E.; Van Haesendonck, C.; Lievens, P.; Trioni, M. I.; Giordano, L.; Pacchioni, G. Resolving all atoms of an alkali halide via nanomodulation of the thin NaCl film surface using the Au(111) reconstruction. Phys. Rev. B 2012, 85, 245440.
Schouteden, K.; Lauwaet, K.; Janssens, E.; Barcaro, G.; Fortunelli, A.; Van Haesendonck, C.; Lievens, P. Probing the atomic structure of metallic nanoclusters with the tip of a scanning tunneling microscope. Nanoscale 2014, 6, 2170–2176.
Cheng, Z. H.; Du, S. X.; Guo, W.; Gao, L.; Deng, Z. T.; Jiang, N.; Guo, H. M.; Tang, H.; Gao, H. J. Direct imaging of molecular orbitals of metal phthalocyanines on metal surfaces with an O2-functionalized tip of a scanning tunneling microscope. Nano Res. 2011, 4, 523–530.
Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J. M.; Colchero, J.; Gomez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.
Hla, S. W. Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology. J. Vac. Sci. Technol. B 2005, 23, 1351–1360.
Hagelaar, J. H. A.; Flipse, C. F. J.; Cerdá, J. I. Modeling realistic tip structures: Scanning tunneling microscopy of NO adsorption on Rh(111). Phys. Rev. B 2008, 78, 161405.
Cerdá, J.; Van Hove, M. A.; Sautet, P.; Salmeron, M. Efficient method for the simulation of STM images. I. Generalized Green-function formalism. Phys. Rev. B 1997, 56, 15885–15899.
Janta-Polczynski, B. A.; Cerda, J. I.; Ethier-Majcher, G.; Piyakis, K.; Rochefort, A. Parallel scanning tunneling microscopy imaging of low dimensional nanostructures. J. Appl. Phys. 2008, 104, 023702.
Cerdá, J.; Soria, F. Accurate and transferable extended Hückeltype tight-binding parameters. Phys. Rev. B 2000, 61, 7965–7971.
Cerdá, J.; Yoon, A.; Van Hove, M. A.; Sautet, P.; Salmeron, M.; Somorjai, G. A. Efficient method for the simulation of STM images. Ⅱ. Application to clean Rh(111) and Rh(111)+c(4×2)-2S. Phys. Rev. B 1997, 56, 15900–15918.
Chen, W.; Madhavan, V.; Jamneala, T.; Crommie, M. F. Scanning tunneling microscopy observation of an electronic superlattice at the surface of clean gold. Phys. Rev. Lett. 1998, 80, 1469–1472.
Kichin, G.; Weiss, C.; Wagner, C.; Tautz, F. S.; Temirov, R. Single molecule and single atom sensors for atomic resolution imaging of chemically complex surfaces. J. Am. Chem. Soc. 2011, 133, 16847–16851.
Krenner, W.; Kuhne, D.; Klappenberger, F.; Barth, J. V. Assessment of scanning tunneling spectroscopy modes inspecting electron confinement in surface-confined supramolecular networks. Sci. Rep. 2013, 3, 1454.
Schouteden, K.; Li, Z.; Iancu, V.; Muzychenko, D. A.; Janssens, E.; Lievens, P.; Van Haesendonck, C. Engineering the band structure of nanoparticles by an incommensurate cover layer. J. Phys. Chem. C 2014, 118, 18271–18277.