AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Germanium nanopyramid arrays showing near-100% absorption in the visible regime

Qi Han1Yongqi Fu1( )Lei Jin1Jingjing Zhao2Zongwei Xu3Fengzhou Fang3Jingsong Gao2Weixing Yu4
School of Physical ElectronicsUniversity of Electronic Science and Technology of ChinaChengdu610054China
Changchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchun130033China
Key Laboratory of Precision Measuring Technology & InstrumentsCentre of Micro-Nano Manufacturing TechnologyTianjin UniversityTianjin300072China
Institute of Micro & Nano OpticsCollege of Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
Show Author Information

Graphical Abstract

Abstract

Solar energy is regarded as one of the most plentiful sources of renewable energy. An extraordinary light-harvesting property of a germanium periodic nanopyramid array is reported in this Letter. Both our theoretical and experimental results demonstrate that the nanopyramid array can achieve perfect broadband absorption from 500- to 800-nm wavelength. Especially in the visible regime, the experimentally measured absorption can even reach 100%. Further analyses reveal that the intrinsic antireflection effect and slow-light waveguide mode play an important role in the ultra-high absorption, which is helpful for the research and development of photovoltaic devices.

References

1

Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205-213.

2

Catchpole, K. R.; Polman, A. Plasmonic solar cells. Opt. Express. 2008, 16, 21793-21800.

3

Zeng, B. B.; Gan, Q. Q.; Kafafi, Z. H.; Bartoli, F. J. Polymeric photovoltaics with various metallic plasmonic nanostructures. J. Appl. Phys. 2013, 113, 063109.

4

Gan, Q. Q.; Bartoli, F. J.; Kafafi, Z. H. Plasmonic-enhanced organic photovoltaics: Breaking the 10% efficiency barrier. Adv. Mater. 2013, 25, 2385-2396.

5

Gunawan, O.; Wang, K.; Fallahazad, B.; Zhang, Y.; Tutuc, E.; Guha, S. High performance wire-array silicon solar cells. Prog. Photovoltaics. 2011, 19, 307-312.

6

Nelson, J. Physics of Solar Cell; Imperial College Press: London, 2008.

7

Cao, L. Y.; Fan, P. Y.; Vasudev, A. P.; White, J. S.; Yu, Z. F.; Cai, W. S.; Schuller, J. A.; Fan, S. H.; Brongersma, M. L. Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 2010, 10, 439-445.

8

Guo, H. M.; Wen, L.; Li, X. H.; Zhao, Z. F.; Wang, Y. Q. Analysis of optical absorption in GaAs nanowire arrays. Nanoscale Res. Lett. 2011, 6, 617.

9

Cao, L. Y.; White, J. S.; Park, J. S.; Schuller, J. A.; Clemens, B. M.; Brongersma, M. L. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 2009, 8, 643-647.

10

Hu, L.; Chen, G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 2007, 7, 3249-3252.

11

Tsai, S. J.; Ballarotto, M.; Romero, D. B.; Herman, W. N.; Kan, H. C.; Phaneuf, R. J. Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell. Opt. Express. 2010, 18, A528-A535.

12

Fan, Z. Y.; Kapadia, R.; Leu, P. W.; Zhang, X. B.; Chueh, Y. L.; Takei, K.; Yu, K.; Jamshidi, A.; Rathore, A. A.; Ruebusch, D. J. et al. Ordered arrays of dual-diameter nanopillars for maximized optical absorption. Nano Lett. 2010, 10, 3823-3827.

13

Fan, Z.; Razavi, H.; Do, J. W.; Moriwaki, A.; Ergen, O.; Chueh, Y. L.; Leu, P. W.; Ho, J. C.; Takahashi, T.; Reichertz, L. A. et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 2009, 8, 648-653.

14

Wang, B. M.; Leu, P. W. Enhanced absorption in silicon nanocone arrays for photovoltaics. Nanotechnology. 2012, 23, 194003.

15

Wang, K. X. Z.; Yu, Z. F.; Liu, V.; Cui, Y.; Fan S. H. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 2012, 12, 1616-1619.

16

Zhu, J.; Yu, Z. F.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y. Q.; Wang, Q.; McGehee, M.; Fan, S. H.; Cui, Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 2009, 9, 279-282.

17

Han, S. E.; Chen, G. Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett. 2010, 10, 1012-1015.

18

Yahaya, N. A.; Yamada, N.; Kotaki, Y.; Nakayama, T. Characterization of light absorption in thin-film silicon with periodic nanohole arrays. Opt. Express. 2013, 21, 5924-5930.

19

Zhang, L. C.; Yang, G.; Wang, K.; Fu, M.; Wang, Y.; Long, H.; Lu, P. X. Opt. Commun. 2013, 291, 395-399.

20

Lin, C. X.; Martínez, L. J.; Povinelli, M. L. Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells. Opt. Express. 2013, 21, A872-A882.

21

Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342-2348.

22

Zhang, B. X.; Zhao, Y. H.; Hao, Q. Z.; Kiraly, B.; Khoo, I. C.; Chen, S. F.; Huang, T. J. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt. Express. 2011, 19, 15221- 15228.

23

Hao, J. M.; Wang, J.; Liu, X. L.; Padilla, W. J.; Zhou, L.; Qiu, M. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 2010, 96, 251104.

24

Liu, K.; Zeng, B. B.; Song, H. M.; Gan, Q. Q.; Bartoli, F. J.; Kafafi, Z. H. Super absorption of ultra-thin organic photovoltaic films. Opt. Commun. 2014, 314, 48-56.

25

Ji, D. X.; Song, H. M.; Zeng, X.; Hu, H. F.; Liu, K.; Zhang, N.; Gan, Q. Q. Broadband absorption engineering of hyperbolic metafilm patterns. Sci. Rep. 2014, 4, 4498.

26

Zeng, B. B.; Kafafi, Z. H.; Bartoli, F. J. Transparent electrodes based on two dimensional Ag nanogrids and double one-dimensional Ag nanogratings for organic photovoltaics. J. Photon. Energy. 2015, 5, 057005.

27

Cui, Y. X.; Fung, K. H.; Xu, J.; Ma, H. J.; Jin, Y.; He, S. L.; Fang, N. X. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 2012, 12, 1443-1447.

28

Fu, Y. Q.; Bryan, N. K. A.; San, O. A.; Hong, L. B. Data format transferring for FIB microfabrication. Int. J. Adv. Manuf. Tech. 2000, 16, 600-602.

29

Fu, Y.; Bryan, N. K. A. Fabrication and characterization of slanted nanopillars arrays. J. Vac. Sci. Technol. B. 2005, 23, 984-989.

30

Street, R. A. Hydrogenated Amorphous Silicon; Cambridge University Press: Cambridge, 1991.

31

Shah, A. V.; Schade, H.; Vanecek, M.; Meier, J.; Vallat- Sauvain, E.; Wyrsch, N.; Kroll, U.; Droz, C.; Bailat, J. Thin-film silicon solar cell technology. Prog. Photovoltaics. 2004, 12, 113-142.

32

Han, Q.; Jin, L.; Fu, Y. Q.; Yu, W. X. Polarization and incident angle insensitive germanium nano-pyramid array for perfect absorption in visible regime. Insciences J. 2014, 4, 19-26.

33

He, J.; He, S. L. Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate. IEEE Microw. Wirel. Co. 2005, 16, 96-98.

34

Jiang, T.; Zhao, J.; Feng, Y. Stopping light by an air waveguide with anisotropic metamaterial cladding. Opt. Express. 2009, 17, 170-177.

35

Tsakmakidis, K. L.; Boardman, A. D.; Hess, O. 'Trapped rainbow' storage of light in metamaterials. Nature. 2007, 450, 397-401.

Nano Research
Pages 2216-2222
Cite this article:
Han Q, Fu Y, Jin L, et al. Germanium nanopyramid arrays showing near-100% absorption in the visible regime. Nano Research, 2015, 8(7): 2216-2222. https://doi.org/10.1007/s12274-015-0731-0

605

Views

26

Crossref

N/A

Web of Science

29

Scopus

2

CSCD

Altmetrics

Received: 10 November 2014
Revised: 14 January 2015
Accepted: 16 January 2015
Published: 28 April 2015
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015
Return